
Image Alignment and Stitching:
A Tutorial1

Richard Szeliski
Last updated, December 10, 2006

Technical Report
MSR-TR-2004-92

This tutorial reviews image alignment and image stitching algorithms. Image align-
ment algorithms can discover the correspondence relationships among images with
varying degrees of overlap. They are ideally suited for applications such as video
stabilization, summarization, and the creation of panoramic mosaics. Image stitch-
ing algorithms take the alignment estimates produced by such registration algorithms
and blend the images in a seamless manner, taking care to deal with potential prob-
lems such as blurring or ghosting caused by parallax and scene movement as well as
varying image exposures. This tutorial reviews the basic motion models underlying
alignment and stitching algorithms, describes effective direct (pixel-based) and fea-
ture-based alignment algorithms, and describes blending algorithms used to produce
seamless mosaics. It closes with a discussion of open research problems in the area.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1A shorter version of this report appeared in Paragios, N. et al., editors, Handbook of Mathematical
Models in Computer Vision, pages 273–292, Springer, 2005.



Contents
1 Introduction 1

2 Motion models 2
2.1 2D (planar) motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 3D transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Cylindrical and spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Lens distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Direct (pixel-based) alignment 15
3.1 Error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Hierarchical motion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Fourier-based alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Incremental refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Parametric motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Feature-based registration 33
4.1 Keypoint detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Geometric registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Direct vs. feature-based alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Global registration 47
5.1 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Parallax removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Recognizing panoramas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Compositing 56
6.1 Choosing a compositing surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Pixel selection and weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Extensions and open issues 68

i



1 Introduction
Algorithms for aligning images and stitching them into seamless photo-mosaics are among the
oldest and most widely used in computer vision. Frame-rate image alignment is used in every
camcorder that has an “image stabilization” feature. Image stitching algorithms create the high-
resolution photo-mosaics used to produce today’s digital maps and satellite photos. They also
come bundled with most digital cameras currently being sold, and can be used to create beautiful
ultra wide-angle panoramas.

An early example of a widely-used image registration algorithm is the patch-based translational
alignment (optical flow) technique developed by Lucas and Kanade (1981). Variants of this algo-
rithm are used in almost all motion-compensated video compression schemes such as MPEG and
H.263 (Le Gall 1991). Similar parametric motion estimation algorithms have found a wide variety
of applications, including video summarization (Bergen et al. 1992a, Teodosio and Bender 1993,
Kumar et al. 1995, Irani and Anandan 1998), video stabilization (Hansen et al. 1994), and video
compression (Irani et al. 1995, Lee et al. 1997). More sophisticated image registration algorithms
have also been developed for medical imaging and remote sensing—see (Brown 1992, Zitov’aa
and Flusser 2003, Goshtasby 2005) for some previous surveys of image registration techniques.

In the photogrammetry community, more manually intensivemethods based on surveyed ground
control points or manually registered tie points have long been used to register aerial photos into
large-scale photo-mosaics (Slama 1980). One of the key advances in this community was the de-
velopment of bundle adjustment algorithms that could simultaneously solve for the locations of
all of the camera positions, thus yielding globally consistent solutions (Triggs et al. 1999). One
of the recurring problems in creating photo-mosaics is the elimination of visible seams, for which
a variety of techniques have been developed over the years (Milgram 1975, Milgram 1977, Peleg
1981, Davis 1998, Agarwala et al. 2004)

In film photography, special cameras were developed at the turn of the century to take ultra
wide angle panoramas, often by exposing the film through a vertical slit as the camera rotated
on its axis (Meehan 1990). In the mid-1990s, image alignment techniques started being applied
to the construction of wide-angle seamless panoramas from regular hand-held cameras (Mann
and Picard 1994, Szeliski 1994, Chen 1995, Szeliski 1996). More recent work in this area has
addressed the need to compute globally consistent alignments (Szeliski and Shum 1997, Sawhney
and Kumar 1999, Shum and Szeliski 2000), the removal of “ghosts” due to parallax and object
movement (Davis 1998, Shum and Szeliski 2000, Uyttendaele et al. 2001, Agarwala et al. 2004),
and dealing with varying exposures (Mann and Picard 1994, Uyttendaele et al. 2001, Levin et al.
2004b, Agarwala et al. 2004). (A collection of some of these papers can be found in (Benosman
and Kang 2001).) These techniques have spawned a large number of commercial stitching products
(Chen 1995, Sawhney et al. 1998), for which reviews and comparison can be found on the Web.

1



While most of the above techniques work by directly minimizing pixel-to-pixel dissimilarities,
a different class of algorithms works by extracting a sparse set of features and then matching these
to each other (Zoghlami et al. 1997, Capel and Zisserman 1998, Cham and Cipolla 1998, Badra et
al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003). Feature-based approaches have
the advantage of being more robust against scene movement and are potentially faster, if imple-
mented the right way. Their biggest advantage, however, is the ability to “recognize panoramas”,
i.e., to automatically discover the adjacency (overlap) relationships among an unordered set of im-
ages, which makes them ideally suited for fully automated stitching of panoramas taken by casual
users (Brown and Lowe 2003).

What, then, are the essential problems in image alignment and stitching? For image align-
ment, we must first determine the appropriate mathematical model relating pixel coordinates in
one image to pixel coordinates in another. Section 2 reviews these basic motion models. Next, we
must somehow estimate the correct alignments relating various pairs (or collections) of images.
Section 3 discusses how direct pixel-to-pixel comparisons combined with gradient descent (and
other optimization techniques) can be used to estimate these parameters. Section 4 discusses how
distinctive features can be found in each image and then efficiently matched to rapidly establish
correspondences between pairs of images. When multiple images exist in a panorama, techniques
must be developed to compute a globally consistent set of alignments and to efficiently discover
which images overlap one another. These issues are discussed in Section 5.

For image stitching, we must first choose a final compositing surface onto which to warp and
place all of the aligned images (Section 6). We also need to develop algorithms to seamlessly blend
overlapping images, even in the presence of parallax, lens distortion, scene motion, and exposure
differences (Section 6). In the last section of this survey, I discuss additional applications of image
stitching and open research problems.

2 Motion models
Before we can register and align images, we need to establish the mathematical relationships that
map pixel coordinates from one image to another. A variety of such parametric motion models
are possible, from simple 2D transforms, to planar perspective models, 3D camera rotations, lens
distortions, and the mapping to non-planar (e.g., cylindrical) surfaces (Szeliski 1996).

To facilitate working with images at different resolutions, we adopt a variant of the normalized
device coordinates used in computer graphics (Watt 1995, OpenGL-ARB 1997). For a typical
(rectangular) image or video frame, we let the pixel coordinates range from [−1, 1] along the
longer axis, and [−a, a] along the shorter, where a is the inverse of the aspect ratio, as shown

2







 
















 












 

Figure 1: Mapping from pixel coordinates to normalized device coordinates

in Figure 1.1 For an image with width W and height H , the equations mapping integer pixel
coordinates x = (x, y) to normalized device coordinates x = (x, y) are

x =
2x − W

S
and y =

2y − H

S
where S = max(W, H). (1)

Note that if we work with images in a pyramid, we need to halve the S value after each decimation
step rather than recomputing it from max(W, H), since the (W, H) values may get rounded or
truncated in an unpredictable manner. Note that for the rest of this paper, we use normalized
device coordinates when referring to pixel coordinates.

2.1 2D (planar) motions
Having defined our coordinate system, we can now describe how coordinates are transformed. The
simplest transformations occur in the 2D plane and are illustrated in Figure 2.

Translation. 2D translations can be written as x′ = x + t or

x′ =
[

I t
]

x̃ (2)

where I is the (2 × 2) identity matrix and x̃ = (x, y, 1) is the homogeneous or projective 2D
coordinate.

Rotation + translation. This transformation is also known as 2D rigid body motion or the 2D
Euclidean transformation (since Euclidean distances are preserved). It can be written as x′ =

Rx + t or
x′ =

[

R t
]

x̃ (3)

1In computer graphics, it is usual to have both axes range from [−1, 1], but this requires the use of two different
focal lengths for the vertical and horizontal dimensions, and makes it more awkward to handle mixed portrait and
landscape mode images.

3









 





Figure 2: Basic set of 2D planar transformations

where

R =





cos θ − sin θ

sin θ cos θ



 (4)

is an orthonormal rotation matrix withRRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transform can be expressed as
x′ = sRx + t where s is an arbitrary scale factor. It can also be written as

x′ =
[

sR t
]

x̃ =





a −b tx
b a ty



 x̃, (5)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles between
lines.

Affine. The affine transform is written as x′ = Ax̃, whereA is an arbitrary 2 × 3 matrix, i.e.,

x′ =





a00 a01 a02

a10 a11 a12



 x̃. (6)

Parallel lines remain parallel under affine transformations.

Projective. This transform, also known as a perspective transform or homography, operates on
homogeneous coordinates x̃ and x̃′,

x̃′ ∼ H̃x̃, (7)

where ∼ denotes equality up to scale and H̃ is an arbitrary 3 × 3 matrix. Note that H̃ is itself
homogeneous, i.e., it is only defined up to a scale. The resulting homogeneous coordinate x̃′ must
be normalized in order to obtain an inhomogeneous result x′, i.e.,

x′ =
h00x + h01y + h02

h20x + h21y + h22
and y′ =

h10x + h11y + h12

h20x + h21y + h22
. (8)

Perspective transformations preserve straight lines.

4



Name Matrix # D.O.F. Preserves: Icon

translation
[

I t
]

2×3
2 orientation + · · ·

rigid (Euclidean)
[

R t
]

2×3
3 lengths + · · · !!

!!
""

""

similarity
[

sR t
]

2×3
4 angles + · · · !

!
"

"

affine
[

A
]

2×3
6 parallelism + · · · ## ##

projective
[

H̃
]

3×3
8 straight lines $$

%%

Table 1: Hierarchy of 2D coordinate transformations. The 2 × 3 matrices are extended with a third [0T 1]

row to form a full 3 × 3 matrix for homogeneous coordinate transformations.

Hierarchy of 2D transformations The preceding set of transformations are illustrated in Fig-
ure 2 and summarized in Table 1. The easiest way to think of these is as a set of (potentially
restricted) 3 × 3 matrices operating on 2D homogeneous coordinate vectors. Hartley and Zisser-
man (2004) contains a more detailed description of the hierarchy of 2D planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under composition
and have an inverse that is a member of the same group. Each (simpler) group is a subset of the
more complex group below it.

2.2 3D transformations
A similar nested hierarchy exists for 3D coordinate transformations that can be denoted using
4 × 4 transformation matrices, with 3D equivalents to translation, rigid body (Euclidean) and
affine transformations, and homographies (sometimes called collineations) (Hartley and Zisserman
2004).

The process of central projection maps 3D coordinates p = (X, Y, Z) to 2D coordinates x =

(x, y, 1) through a pinhole at the camera origin onto a 2D projection plane a distance f along the z

axis,
x = f

X

Z
, y = f

Y

Z
, (9)

as shown in Figure 3. The relationship between the (unit-less) focal length f and the field of view
θ is given by

f−1 = tan
θ

2
or θ = 2 tan−1 1

f
. (10)

To convert the focal length f to its more commonly used 35mm equivalent, multiply the above

5











Figure 3: Central projection, showing the relationship between the 3D and 2D coordinates p and x, as well
as the relationship between the focal length f and the field of view θ.

number by 17.5 (the half-width of a 35mm photo negative frame). To convert it to pixel coordi-
nates, multiply it by S/2 (half-width for a landscape photo).

In the computer graphics literature, perspective projection is often written as a permutation
matrix that permutes the last two elements of homogeneous 4-vector p = (X, Y, Z, 1),

x̃ ∼















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















p, (11)

followed by a scaling and translation into screen and z-buffer coordinates.
In computer vision, it is traditional to drop the z-buffer values, since these cannot be sensed in

an image and to write

x̃ ∼









f 0 0 0

0 f 0 0

0 0 1 0









p =
[

K 0

]

p (12)

whereK = diag(f, f, 1) is called the intrinsic calibrationmatrix.2 This matrix can be replaced by
a more general upper-triangular matrixK that accounts for non-square pixels, skew, and a variable
optic center location (Hartley and Zisserman 2004). However, in practice, the simple focal length
scaling used above provides high-quality results when stitching images from regular cameras.

In this paper, I prefer to use a 4 × 4 projection matrix, P ,

x̃ ∼




K 0

0
T 1



 p = Pp, (13)

2The last column ofK usually contains the optical center (cx, cy), but this can be set to zero if we use normalized
device coordinates.

6



 

 

 







 
 









(a) (b)

Figure 4: A point is projected into two images: (a) relationship between the 3D point coordinate
(X,Y,Z, 1) and the 2D projected point (x, y, 1, d); (b) planar homography induced by points all lying
on a common place n̂0 · p + c0 = 0.

which maps the homogeneous 4-vector p = (X, Y, Z, 1) to a special kind of homogeneous screen
vector x̃ = (x, y, 1, d). This allows me to denote the upper-left 3 × 3 portion of the projection
matrix P as K (making it compatible with the computer vision literature), while not dropping
altogether the inverse screen depth information d (which is also sometimes called the disparity d

(Okutomi and Kanade 1993)). This latter quantity is necessary to reason about mappings between
images of a 3D scene, as described below.

What happens when we take two images of a 3D scene from different camera positions and/or
orientations (Figure 4a)? A 3D point p gets mapped to an image coordinate x̃0 in camera 0 through
the combination of a 3D rigid-body (Euclidean) motionE0,

x0 =





R0 t0

0
T 1



 p = E0p, (14)

and a perspective projection P 0,
x̃0 ∼ P 0E0p. (15)

Assuming that we know the z-buffer value d0 for a pixel in one image, we can map it back to the
3D coordinate p using

p ∼ E−1
0 P−1

0 x̃0 (16)

and then project it into another image yielding

x̃1 ∼ P 1E1p = P 1E1E
−1
0 P−1

0 x̃0 = M 10x̃0. (17)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, we can replace the last row of P 0 in (13) with

7







  

Figure 5: Pure 3D camera rotation. The form of the homography (mapping) is particularly simple and
depends only on the 3D rotation matrix and focal lengths.

a general plane equation, n̂0 · p + c0 that maps points on the plane to d0 = 0 values (Figure 4b).
Then, if we set d0 = 0, we can ignore the last column of M 10 in (17) and also its last row, since
we do not care about the final z-buffer depth. The mapping equation (17) thus reduces to

x̃1 ∼ H̃10x̃0, (18)

where H̃10 is a general 3 × 3 homography matrix and x̃1 and x̃0 are now 2D homogeneous co-
ordinates (i.e., 3-vectors) (Szeliski 1994, Szeliski 1996).3 This justifies the use of the 8-parameter
homography as a general alignment model for mosaics of planar scenes (Mann and Picard 1994,
Szeliski 1996).4

Rotational panoramas The more interesting case is when the camera undergoes pure rotation
(Figure 5), which is equivalent to assuming all points are very far from the camera, i.e., on the
plane at infinity. Setting t0 = t1 = 0, we get the simplified 3 × 3 homography

H̃10 = K1R1R
−1
0 K−1

0 = K1R10K
−1
0 , (19)

whereKk = diag(fk, fk, 1) is the simplified camera intrinsic matrix (Szeliski 1996). This can also
be re-written as









x1

y1

1









∼









f1

f1

1









R10









f−1
0

f−1
0

1

















x0

y0

1









(20)

3For points off the reference plane, we get out-of-plane parallax motion, which is why this representation is often
called the plane plus parallax representation (Sawhney 1994, Szeliski and Coughlan 1994, Kumar et al. 1994).

4Note that for a single pair of images, the fact that a 3D plane is being viewed by a set of rigid cameras does not
reduce the total number of degrees of freedom. However, for a large collection of images taken of a planar surface
(e.g., a whiteboard) from a calibrated camera, we could reduce the number of degrees of freedom per image from 8 to
6 by assuming that the plane is at a canonical location (e.g., z = 1).

8



or








x1

y1

f1









∼ R10









x0

y0

f0









, (21)

which reveals the simplicity of the mapping equations and makes all of the motion parameters
explicit. Thus, instead of the general 8-parameter homography relating a pair of images, we get the
3-, 4-, or 5-parameter 3D rotationmotion models corresponding to the cases where the focal length
f is known, fixed, or variable (Szeliski and Shum 1997). Estimating the 3D rotation matrix (and
optionally, focal length) associated with each image is intrinsically more stable than estimating a
full 8-d.o.f. homography, which makes this the method of choice for large-scale image stitching
algorithms (Szeliski and Shum 1997, Shum and Szeliski 2000, Brown and Lowe 2003).

Parameterizing 3D rotations. If we are going to represent panoramas using a combination of
rotations and focal lengths, what is the best way to represent the rotations themselves? The choices
include:

• the full 3 × 3 matrixR, which has to be re-orthonormalized after each update;

• Euler angles (α, β, γ), which are a bad idea as you cannot always move smoothly from one
rotation to another;

• the axis/angle (or exponential twist) representation, which represents the rotation by an axis
n̂ and a rotation angle θ, or the product of the two,

%ω = θn̂ = (ωx,ωy,ωz), (22)

which has the minimal number of 3 parameters, but is still not unique;

• and unit quaternions, which represent rotations with unit 4-vectors,

q = (x, y, z, w) = (v, w) = (sin
θ

2
n̂, cos

θ

2
), (23)

where n̂ and θ are the rotation axis and angle.

The rotation matrix corresponding to a rotation by θ around an axis n̂ is

R(n̂, θ) = I + sin θ[n̂]× + (1 − cos θ)[n̂]2×, (24)

which is known as Rodriguez’s formula (Ayache 1989), and [n̂]× is the matrix form of the cross-
product operator,

[n̂]× =









0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0









. (25)

9



For small (infinitesimal) rotations, the rotation reduces to

R(%ω) ≈ I + θ[n̂]× = I + [%ω]×. (26)

Using the trigonometric identities

sin θ = 2 sin
θ

2
cos

θ

2
= 2‖v‖w

and
(1 − cos θ) = 2 sin2 θ

2
= 2‖v‖2,

Rodriguez’s formula for a quaternion can be converted to

R(q) = I + sin θ[n̂]× + (1 − cos θ)[n̂]2×

= I + 2w[v]× + 2[v]2×. (27)

This suggests a quick way to rotate a vector by a quaternion using a series of cross products,
scalings, and additions. From this, we can derive the commonly used formula for R(q) as a
function of q = (x, y, z, w),

R(q) =









1 − 2(y2 + z2) 2(xy − zw) 2(xz + yw)

2(xy + zw) 1 − 2(x2 + z2) 2(yz − xw)

2(xz − yw) 2(yz + xw) 1 − 2(x2 + y2)









. (28)

The diagonal terms can be made more symmetrical by replacing 1 − 2(y2 + z2) with (x2 + w2 −
y2 − z2), etc.

Between the axis/angle representation and quaternions, I generally prefer unit quaternions,
because they possess a nice algebra that makes it easy to take products (compositions), ratios
(change in rotation), and linear interpolations (Shoemake 1985). For example, the product of two
quaternions q0 = (v0, w0) and q1 = (v1, w1) is given by

q2 = q0q1 = (v0 × v1 + w0v1 + w1v0, w0w1 − v0 · v1), (29)

with the property thatR(q2) = R(q0)R(q1). (Note that quaternion multiplication is not commu-
tative, just as 3D rotations and matrix multiplications are not.) Taking the inverse of a quaternion
is also easy: just flip the sign of v or w (but not both!). However, when it comes time to update
rotation estimates, I use an incremental form of the axis/angle representation (26), as described in
§4.3.

10



 

   







 

    
  





(a) (b)

Figure 6: Projection from 3D to cylindrical and spherical coordinates.

2.3 Cylindrical and spherical coordinates
An alternative to using homographies or 3D motions to align images is to first warp the images
into cylindrical coordinates and to then use a pure translational model to align them (Szeliski 1994,
Chen 1995). Unfortunately, this only works if the images are all taken with a level camera or with
a known tilt angle.

Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the
identity,R = I, so that the optic axis is aligned with the z axis and the y axis is aligned vertically.
The 3D ray corresponding to an (x, y) pixel is therefore (x, y, f).

We wish to project this image onto a cylindrical surface of unit radius (Szeliski 1994). Points
on this surface are parameterized by an angle θ and a height h, with the 3D cylindrical coordinates
corresponding to (θ, h) given by

(sin θ, h, cos θ) ∝ (x, y, f), (30)

as shown in Figure 6a. From this correspondence, we can compute the formula for the warped or
mapped coordinates (Szeliski and Shum 1997),

x′ = sθ = s tan−1 x

f
, (31)

y′ = sh = s
y√

x2 + f 2
, (32)

where s is an arbitrary scaling factor (sometimes called the radius of the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of the image.5 The inverse of this
mapping equation is given by

x = f tan θ = f tan
x′

s
, (33)

y = h
√

x2 + f 2 =
y′

s
f

√

1 + tan2 x′/s = f
y′

s
sec

x′

s
. (34)

5The scale can also be set to a larger or smaller value for the final compositing surface, depending on the desired
output panorama resolution—see §6.

11



(a) (b)

Figure 7: An example of a cylindrical panorama: (a) two cylindrically warped images related by a hori-
zontal translation; (b) part of a cylindrical panorama composited from a sequence of images.

Images can also be projected onto a spherical surface (Szeliski and Shum 1997), which is use-
ful if the final panorama includes a full sphere or hemisphere of views, instead of just a cylindrical
strip. In this case, the sphere is parameterized by two angles (θ,φ), with 3D spherical coordinates
given by

(sin θ cosφ, sinφ, cos θ cosφ) ∝ (x, y, f), (35)

as shown in Figure 6b. The correspondence between coordinates is now given by (Szeliski and
Shum 1997)

x′ = sθ = s tan−1 x

f
, (36)

y′ = sφ = s tan−1 y√
x2 + f 2

, (37)

while the inverse is given by

x = f tan θ = f tan
x′

s
, (38)

y =
√

x2 + f 2 tanφ = tan
y′

s
f

√

1 + tan2 x′/s = f tan
y′

s
sec

x′

s
. (39)

Note that it may be simpler to generate a scaled (x, y, z) direction from (35) followed by a per-
spective division by z and a scaling by f .

Cylindrical image stitching algorithms are most commonly used when the camera is known to
be level and only rotating around its vertical axis (Chen 1995). Under these conditions, images at
different rotations are related by a pure horizontal translation.6 This makes it attractive as an initial
class project in an introductory computer vision course, since the full complexity of the perspective
alignment algorithm (§3.5 & §4.3) can be avoided. Figure 7 shows how two cylindrically warped
images from a leveled rotational panorama are related by a pure translation (Szeliski and Shum
1997).

6Small vertical tilts can sometimes be compensated for with vertical translations.

12



Figure 8: An example of a spherical panorama constructed from 54 photographs.

Professional panoramic photographers sometimes also use a pan-tilt head that makes it easy to
control the tilt and to stop at specific detents in the rotation angle. This not only ensures a uniform
coverage of the visual field with a desired amount of image overlap, but also makes it possible
to stitch the images using cylindrical or spherical coordinates and pure translations. In this case,
pixel coordinates (x, y, f) must first be rotated using the known tilt and panning angles before
being projected into cylindrical or spherical coordinates (Chen 1995). Having a roughly known
panning angle also makes it easier to compute the alignment, since the rough relative positioning
of all the input images is known ahead of time, enabling a reduced search range for alignment.
Figure 8 shows a full 3D rotational panorama unwrapped onto the surface of a sphere (Szeliski and
Shum 1997).

One final coordinate mapping worth mentioning is the polarmapping where the north pole lies
along the optic axis rather than the vertical axis,

(cos θ sinφ, sin θ sinφ, cosφ) = s (x, y, z). (40)

In this case, the mapping equations become

x′ = sφ cos θ = s
x

r
tan−1 r

z
, (41)

y′ = sφ sin θ = s
y

r
tan−1 r

z
, (42)

where r =
√

x2 + y2 is the radial distance in the (x, y) plane and sφ plays a similar role in the
(x′, y′) plane. This mapping provides an attractive visualization surface for certain kinds of wide-
angle panoramas and is also a good model for the distortion induced by fisheye lenses, as discussed
in §2.4. Note how for small values of (x, y), the mapping equations reduces to x′ ≈ sx/z, which
suggests that s plays a role similar to the focal length f .

13



(a) (b) (c)

Figure 9: Examples of radial lens distortion: (a) barrel, (b) pincushion, and (c) fisheye. The fisheye image
spans almost a complete 180◦ from side-to-side.

2.4 Lens distortions
When images are taken with wide-angle lenses, it is often necessary to model lens distortions
such as radial distortion. The radial distortion model says that coordinates in the observed images
are displaced away (barrel distortion) or towards (pincushion distortion) the image center by an
amount proportional to their radial distance (Figure 9a–b). The simplest radial distortion models
use low-order polynomials, e.g.,

x′ = x(1 + κ1r
2 + κ2r

4)

y′ = y(1 + κ1r
2 + κ2r

4), (43)

where r2 = x2 + y2 and κ1 and κ2 are called the radial distortion parameters (Brown 1971, Slama
1980).7 More complex distortion models also include tangential (decentering) distortions (Slama
1980), but these are usually not necessary for consumer-level stitching.

A variety of techniques can be used to estimate the radial distortion parameters for a given
lens. One of the simplest and most useful is to take an image of a scene with a lot of straight lines,
especially lines aligned with and near the edges of the image. The radial distortion parameters can
then be adjusted until all of the lines in the image are straight, which is commonly called the plumb
line method (Brown 1971, Kang 2001, El-Melegy and Farag 2003).

Another approach is to use several overlapping images and to combine the estimation of the ra-
dial distortion parameters together with the image alignment process. Sawhney and Kumar (1999)
use a hierarchy of motion models (translation, affine, projective) in a coarse-to-fine strategy cou-
pled with a quadratic radial distortion correction term. They use direct (intensity-based) mini-

7Sometimes the relationship between x and x′ is expressed the other way around, i.e., using primed (final) coordi-
nates on the right-hand side.

14



mization to compute the alignment. Stein (1997) uses a feature-based approach combined with
a general 3D motion model (and quadratic radial distortion), which requires more matches than a
parallax-free rotational panorama but is potentially more general. More recent approaches some-
times simultaneously compute both the unknown intrinsic parameters and the radial distortion
coefficients, which may include higher order terms or more complex rational or non-parametric
forms (Claus and Fitzgibbon 2005, Sturm 2005, Thirthala and Pollefeys 2005, Barreto and Dani-
ilidis 2005, Hartley and Kang 2005, Steele and Jaynes 2006, Tardif et al. 2006b).

Fisheye lenses require a different model than traditional polynomial models of radial distortion
(Figure 9c). Instead, fisheye lenses behave, to a first approximation, as equi-distance projectors
of angles away from the optic axis (Xiong and Turkowski 1997), which is the same as the polar
projection described by equations (40-42). Xiong and Turkowski (1997) describe how this model
can be extended with the addition of an extra quadratic correction in φ, and how the unknown
parameters (center of projection, scaling factor s, etc.) can be estimated from a set of overlapping
fisheye images using a direct (intensity-based) non-linear minimization algorithm.

Even more general models of lens distortion exist. For example, one can represent any lens as
a mapping of pixel to rays in space (Gremban et al. 1988, Champleboux et al. 1992, Grossberg
and Nayar 2001, Tardif et al. 2006a), either represented as a dense mapping or using a sparser
interpolated smooth function such as a spline (Goshtasby 1989, Champleboux et al. 1992).

3 Direct (pixel-based) alignment
Once we have chosen a suitable motion model to describe the alignment between a pair of images,
we need to devise some method to estimate its parameters. One approach is to shift or warp the
images relative to each other and to look at how much the pixels agree. Approaches that use
pixel-to-pixel matching are often called direct methods, as opposed to the feature-based methods
described in the next section.

To use a direct method, a suitable error metric must first be chosen to compare the images.
Once this has been established, a suitable search technique must be devised. The simplest tech-
nique is to exhaustively try all possible alignments, i.e., to do a full search. In practice, this may
be too slow, so hierarchical coarse-to-fine techniques based on image pyramids have been devel-
oped. Alternatively, Fourier transforms can be used to speed up the computation. To get sub-pixel
precision in the alignment, incremental methods based on a Taylor series expansion of the image
function are often used. These can also be applied to parametric motion models. Each of these
techniques is described in more detail below.

15



3.1 Error metrics
The simplest way to establish an alignment between two images is to shift one image relative to
the other. Given a template image I0(x) sampled at discrete pixel locations {xi = (xi, yi)}, we
wish to find where it is located in image I1(x). A least-squares solution to this problem is to find
the minimum of the sum of squared differences (SSD) function

ESSD(u) =
∑

i

[I1(xi + u) − I0(xi)]
2 =

∑

i

e2
i , (44)

where u = (u, v) is the displacement and ei = I1(xi + u) − I0(xi) is called the residual error
(or the displaced frame difference in the video coding literature).8 (We ignore for the moment the
possibility that parts of I0 may lie outside the boundaries of I1 or be otherwise not visible.)

In general, the displacement u can be fractional, so a suitable interpolation function must be
applied to image I1(x). In practice, a bilinear interpolant is often used, but bi-cubic interpolation
should yield slightly better results. Color images can be processed by summing differences across
all three color channels, although it is also possible to first transform the images into a different
color space or to only use the luminance (which is often done in video encoders).

Robust error metrics We can make the above error metric more robust to outliers by replacing
the squared error terms with a robust function ρ(ei) (Huber 1981, Hampel et al. 1986, Black and
Anandan 1996, Stewart 1999) to obtain

ESRD(u) =
∑

i

ρ(I1(xi + u) − I0(xi)) =
∑

i

ρ(ei). (45)

The robust norm ρ(e) is a function that grows less quickly than the quadratic penalty associated
with least squares. One such function, sometimes used in motion estimation for video coding
because of its speed, is the sum of absolute differences (SAD) metric, i.e.,

ESAD(u) =
∑

i

|I1(xi + u) − I0(xi)| =
∑

i

|ei|. (46)

However, since this function is not differentiable at the origin, it is not well suited to gradient-
descent approaches such as the ones presented in §3.4.

Instead, a smoothly varying function that is quadratic for small values but grows more slowly
away from the origin is often used. Black and Rangarajan (1996) discuss a variety of such func-
tions, including the Geman-McClure function,

ρGM(x) =
x2

1 + x2/a2
, (47)

8The usual justification for using least squares is that it is the optimal estimate with respect to Gaussian noise. See
the discussion below on robust alternatives.

16



where a is a constant that can be thought of as an outlier threshold. An appropriate value for the
threshold can itself the derived using robust statistics (Huber 1981, Hampel et al. 1986, Rousseeuw
and Leroy 1987), e.g., by computing the median of absolute differences, MAD = medi|ei|, and
multiplying by 1.4 to obtain a robust estimate of the standard deviation of the non-outlier noise
process (Stewart 1999).

Spatially varying weights. The error metrics above ignore that fact that for a given alignment,
some of the pixels being compared may lie outside the original image boundaries. Furthermore,
we may want to partially or completely downweight the contributions of certain pixels. For ex-
ample, we may want to selectively “erase” some parts of an image from consideration, e.g., when
stitching a mosaic where unwanted foreground objects have been cut out. For applications such as
background stabilization, we may want to downweight the middle part of the image, which often
contains independently moving objects being tracked by the camera.

All of these tasks can be accomplished by associating a spatially varying per-pixel weight
value with each of the two images being matched. The error metric then become the weighted (or
windowed) SSD function,

EWSSD(u) =
∑

i

w0(x)w1(xi + u)[I1(xi + u) − I0(xi)]
2, (48)

where the weighting functions w0 and w1 are zero outside the valid ranges of the images.
If a large range of potential motions is allowed, the above metric can have a bias towards

smaller overlap solutions. To counteract this bias, the windowed SSD score can be divided by the
overlap area

A =
∑

i

w0(x)w1(xi + u) (49)

to compute a per-pixel (or mean) squared pixel error. The square root of this quantity is the root
mean squared intensity error

RMS =
√

EWSSD/A (50)

often seen reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not taken with
the same exposure. A simple model of linear (affine) intensity variation between the two images is
the bias and gain model,

I1(x + u) = (1 + α)I0(x) + β, (51)

where β is the bias and α is the gain (Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos
1991, Baker et al. 2003b). The least squares formulation then becomes

EBG(u) =
∑

i

[I1(xi + u) − (1 + α)I0(xi) − β]2 =
∑

i

[αI0(xi) + β − ei]
2. (52)

17



Rather than taking a simple squared difference between corresponding patches, it becomes neces-
sary to perform a linear regression, which is somewhat more costly. Note that for color images,
it may be necessary to estimate a different bias and gain for each color channel to compensate for
the automatic color correction performed by some digital cameras.

A more general (spatially-varying non-parametric) model of intensity variation, which is com-
puted as part of the registration process, is presented in (Jia and Tang 2003). This can be useful
for dealing with local variations such as the vignetting caused by wide-angle lenses. It is also
possible to pre-process the images before comparing their values, e.g., by using band-pass filtered
images (Burt and Adelson 1983, Bergen et al. 1992a) or using other local transformations such as
histograms or rank transforms (Cox et al. 1995, Zabih and Woodfill 1994), or to maximize mutual
information (Viola and Wells III 1995, Kim et al. 2003).

Correlation. An alternative to taking intensity differences is to perform correlation, i.e., to max-
imize the product (or cross-correlation) of the two aligned images,

ECC(u) =
∑

i

I0(xi)I1(xi + u). (53)

At first glance, this may appear to make bias and gain modeling unnecessary, since the images will
prefer to line up regardless of their relative scales and offsets. However, this is actually not true. If
a very bright patch exists in I1(x), the maximum product may actually lie in that area.

For this reason, normalized cross-correlation is more commonly used,

ENCC(u) =

∑

i[I0(xi) − I0] [I1(xi + u) − I1]
√

∑

i[I0(xi) − I0]2[I1(xi + u) − I1]2
, (54)

where

I0 =
1

N

∑

i

I0(xi) and (55)

I1 =
1

N

∑

i

I1(xi + u) (56)

are the mean images of the corresponding patches and N is the number of pixels in the patch. The
normalized cross-correlation score is always guaranteed to be in the range [−1, 1], which makes it
easier to handle in some higher-level applications (such as deciding which patches truly match).
Note, however, that the NCC score is undefined if either of the two patches has zero variance (and
in fact, its performance degrades for noisy low-contrast regions).

18



3.2 Hierarchical motion estimation
Now that we have defined an alignment cost function to optimize, how do we find its minimum?
The simplest solution is to do a full search over some range of shifts, using either integer or sub-
pixel steps. This is often the approach used for block matching in motion compensated video
compression, where a range of possible motions (say ±16 pixels) is explored.9

To accelerate this search process, hierarchical motion estimation is often used, where an image
pyramid is first constructed, and a search over a smaller number of discrete pixels (corresponding to
the same range of motion) is first performed at coarser levels (Quam 1984, Anandan 1989, Bergen
et al. 1992a). The motion estimate from one level of the pyramid can then be used to initialize a
smaller local search at the next finer level. While this is not guaranteed to produce the same result
as full search, it usually works almost as well and is much faster.

More formally, let
I(l)
k (xj) ← Ĩ(l−1)

k (2xj) (57)

be the decimated image at level l obtained by subsampling (downsampling) a smoothed (pre-
filtered) version of the image at level l−1. At the coarsest level, we search for the best displacement
u(l) that minimizes the difference between images I(l)

0 and I(l)
1 . This is usually done using a full

search over some range of displacements u(l) ∈ 2−l[−S, S]2 (where S is the desired search range
at the finest (original) resolution level), optionally followed by the incremental refinement step
described in §3.4.

Once a suitable motion vector has been estimated, it is used to predict a likely displacement

û(l−1) ← 2u(l) (58)

for the next finer level.10 The search over displacements is then repeated at the finer level over
a much narrower range of displacements, say û(l−1) ± 1, again optionally combined with an in-
cremental refinement step (Anandan 1989). A nice description of the whole process, extended to
parametric motion estimation (§3.5), can be found in (Bergen et al. 1992a).

9In stereo matching, an explicit search over all possible disparities (i.e., a plane sweep) is almost always performed,
since the number of search hypotheses is much smaller due to the 1D nature of the potential displacements (Scharstein
and Szeliski 2002).

10This doubling of displacements is only necessary if displacements are defined in integer pixel coordinates, which
is the usual case in the literature, e.g., (Bergen et al. 1992a). If normalized device coordinates (§2) are used instead, the
displacements (and search ranges) need not change from level to level, although the step sizes will need to be adjusted
(to keep search steps of roughly one pixel).

19



3.3 Fourier-based alignment
When the search range corresponds to a significant fraction of the larger image (as is the case in
image stitching), the hierarchical approach may not work that well, since it is often not possible
to coarsen the representation too much before significant features get blurred away. In this case, a
Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fourier transform of a shifted signal has the
same magnitude as the original signal but linearly varying phase, i.e.,

F {I1(x + u)} = F {I1(x)} e−2πju·f = I1(f)e−2πju·f , (59)

where f is the vector-valued frequency of the Fourier transform and we use calligraphic notation
I1(f) = F {I1(x)} to denote the Fourier transform of a signal (Oppenheim et al. 1999, p. 57).

Another useful property of Fourier transforms is that convolution in the spatial domain corre-
sponds to multiplication in the Fourier domain (Oppenheim et al. 1999, p. 58). Thus, the Fourier
transform of the cross-correlation function ECC can be written as

F {ECC(u)} = F
{

∑

i

I0(xi)I1(xi + u)

}

= F {I0(u)∗I1(u)} = I0(f )I∗
1 (f), (60)

where
f(u)∗g(u) =

∑

i

f(xi)g(xi + u) (61)

is the correlation function, i.e., the convolution of one signal with the reverse of the other, and
I∗

1 (f ) is the complex conjugate of I1(f). (This is because convolution is defined as the summation
of one signal with the reverse of the other (Oppenheim et al. 1999).)

Thus, to efficiently evaluate ECC over the range of all possible values of u, we take the Fourier
transforms of both images I0(x) and I1(x), multiply both transforms together (after conjugating
the second one), and take the inverse transform of the result. The Fast Fourier Transform algorithm
can compute the transform of an N ×M image in O(NM log NM) operations (Oppenheim et al.
1999). This can be significantly faster than the O(N2M2) operations required to do a full search
when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accelerate the computation of image correla-
tions, it can also be used to accelerate the sum of squared differences function (and its variants) as
well. Consider the SSD formula given in (44). Its Fourier transform can be written as

F {ESSD(u)} = F
{

∑

i

[I1(xi + u) − I0(xi)]
2

}

= δ(f)
∑

i

[I2
0 (xi) + I2

1 (xi)] − 2I0(f )I∗
1 (f).

(62)
Thus, the SSD function can be computed by taking twice the correlation function and subtracting
it from the sum of the energies in the two images.

20



Windowed correlation. Unfortunately, the Fourier convolution theorem only applies when the
summation over xi is performed over all the pixels in both images, using a circular shift of the
image when accessing pixels outside the original boundaries. While this is acceptable for small
shifts and comparably sized images, it makes no sense when the images overlap by a small amount
or one image is a small subset of the other.

In that case, the cross-correlation function should be replaced with a windowed (weighted)
cross-correlation function,

EWCC(u) =
∑

i

w0(xi)I0(xi) w1(xi + u)I1(xi + u), (63)

= [w0(x)I0(x)]∗[w1(x)I1(x)] (64)

where the weighting functions w0 and w1 are zero outside the valid ranges of the images, and both
images are padded so that circular shifts return 0 values outside the original image boundaries.

An even more interesting case is the computation of the weighted SSD function introduced in
(48),

EWSSD(u) =
∑

i

w0(x)w1(xi + u)[I1(xi + u) − I0(xi)]
2 (65)

= w0(x)∗[w1(x)I2
1 (x)] + [w0(x)I2

0 (x)]∗w1(x) − 2[w0(x)I0(x)]∗[w1(x)I1(x)].

The Fourier transform of the resulting expression is therefore

F {EWSSD(u)} = W0(f)S∗
1 (f ) + S0(f)W∗

1 (f ) − 2Î0(f)Î∗
1 (f ), (66)

where
W0 = F{w0(x)},
Î0 = F{w0(x)I0(x)},
S0 = F{w0(x)I2

0 (x)}, and

W1 = F{w1(x)},
Î1 = F{w1(x)I1(x)},
S1 = F{w1(x)I2

1 (x)}
(67)

are the Fourier transforms of the weighting functions and the weighted original and squared image
signals. Thus, for the cost of a few additional image multiplies and Fourier transforms, the correct
windowed SSD function can be computed. (To my knowledge, I have not seen this formulation
written down before, but I have been teaching it to students for several years now.)

The same kind of derivation can be applied to the bias-gain corrected sum of squared difference
function EBG. Again, Fourier transforms can be used to efficiently compute all the correlations
needed to perform the linear regression in the bias and gain parameters in order to estimate the
exposure-compensated difference for each potential shift.

Phase correlation. A variant of regular correlation (60) that is sometimes used for motion esti-
mation is phase correlation (Kuglin and Hines 1975, Brown 1992). Here, the spectrum of the two

21



signals being matched is whitened by dividing each per-frequency product in (60) by the magni-
tudes of the Fourier transforms,

F {EPC(u)} =
I0(f)I∗

1 (f )

‖I0(f)‖‖I1(f )‖
(68)

before taking the final inverse Fourier transform. In the case of noiseless signals with perfect
(cyclic) shift, we have I1(x + u) = I0(x), and hence from (59) we obtain

F {I1(x + u)} = I1(f )e−2πju·f = I0(f ) and
F {EPC(u)} = e−2πju·f . (69)

The output of phase correlation (under ideal conditions) is therefore a single spike (impulse) lo-
cated at the correct value of u, which (in principle) makes it easier to find the correct estimate.

Phase correlation has a reputation in some quarters of outperforming regular correlation, but
this behavior depends on the characteristics of the signals and noise. If the original images are
contaminated by noise in a narrow frequency band (e.g., low-frequency noise or peaked frequency
“hum”), the whitening process effectively de-emphasizes the noise in these regions. However,
if the original signals have very low signal-to-noise ratio at some frequencies (say, two blurry
or low-textured images with lots of high-frequency noise), the whitening process can actually
decrease performance. Recently, gradient cross-correlation has emerged as a promising alternative
to phase correlation (Argyriou and Vlachos 2003), although further systematic studies are probably
warranted. Phase correlation has also been studied by Fleet and Jepson (1990) as a method for
estimating general optical flow and stereo disparity.

Rotations and scale. While Fourier-based alignment is mostly used to estimate translational
shifts between images, it can, under certain limited conditions, also be used to estimate in-plane
rotations and scales. Consider two images that are related purely by rotation, i.e.,

I1(R̂x) = I0(x). (70)

If we re-sample the images into polar coordinates,

Ĩ0(r, θ) = I0(r cos θ, r sin θ) and Ĩ1(r, θ) = I1(r cos θ, r sin θ), (71)

we obtain
Ĩ1(r, θ + θ̂) = Ĩ0(r, θ). (72)

The desired rotation can then be estimated using an FFT shift-based technique.
If the two images are also related by a scale,

I1(e
ŝR̂x) = I0(x), (73)

22



we can re-sample into log-polar coordinates,

Ĩ0(s, θ) = I0(e
s cos θ, es sin θ) and Ĩ1(s, θ) = I1(e

s cos θ, es sin θ), (74)

to obtain
Ĩ1(s + ŝ, θ + θ̂) = I0(s, θ). (75)

In this case, care must be taken to choose a suitable range of s values that reasonably samples the
original image.

For images that are also translated by a small amount,

I1(e
ŝR̂x + t) = I0(x), (76)

De Castro and Morandi (1987) proposed an ingenious solution that uses several steps to estimate
the unknown parameters. First, both images are converted to the Fourier domain, and only the
magnitudes of the transformed images are retained. In principle, the Fourier magnitude images
are insensitive to translations in the image plane (although the usual caveats about border effects
apply). Next, the two magnitude images are aligned in rotation and scale using the polar or log-
polar representations. Once rotation and scale are estimated, one of the images can be de-rotated
and scaled, and a regular translational algorithm can be applied to estimate the translational shift.

Unfortunately, this trick only applies when the images have large overlap (small translational
motion). For more general motion of patches or images, the parametric motion estimator described
in §3.5 or the feature-based approaches described in §4 need to be used.

3.4 Incremental refinement
The techniques described up till now can estimate translational alignment to the nearest pixel (or
potentially fractional pixel if smaller search steps are used). In general, image stabilization and
stitching applications require much higher accuracies to obtain acceptable results.

To obtain better sub-pixel estimates, we can use one of several techniques (Tian and Huhns
1986). One possibility is to evaluate several discrete (integer or fractional) values of (u, v) around
the best value found so far and to interpolate the matching score to find an analytic minimum.

Amore commonly used approach, first proposed by Lucas and Kanade (1981), is to do gradient
descent on the SSD energy function (44), using a Taylor Series expansion of the image function
(Figure 10),

ELK−SSD(u + ∆u) =
∑

i

[I1(xi + u + ∆u) − I0(xi)]
2

≈
∑

i

[I1(xi + u) + J1(xi + u)∆u − I0(xi)]
2 (77)

=
∑

i

[J1(xi + u)∆u + ei]
2, (78)

23








  

 
 





Figure 10: Taylor series approximation of a function and the incremental computation of the optic flow
correction amount. J1(xi + u) is the image gradient at (xi + u) and ei is the current intensity difference.

where
J1(xi + u) = ∇I1(xi + u) = (

∂I1

∂x
,
∂I1

∂y
)(xi + u) (79)

is the image gradient at (xi + u) and

ei = I1(xi + u) − I0(xi), (80)

first introduced in (44), is the current intensity error.11

The above least squares problem can be minimizing by solving the associated normal equations
(Golub and Van Loan 1996),

A∆u = b (81)

where
A =

∑

i

JT
1 (xi + u)J1(xi + u) (82)

and
b = −

∑

i

eiJ
T
1 (xi + u) (83)

are called the (Gauss-Newton approximation of the) Hessian and gradient-weighted residual vec-
tor, respectively.12 These matrices are also often written as

A =





∑

I2
x

∑

IxIy
∑

IxIy
∑

I2
y



 and b = −




∑

IxIt
∑

IyIt



 , (84)

where the subscripts in Ix and Iy denote spatial derivatives, and It is called the temporal derivative,
which makes sense if we are computing instantaneous velocity in a video sequence.

The gradients required for J1(xi + u) can be evaluated at the same time as the image warps
required to estimate I1(xi +u), and in fact are often computed as a side-product of image interpo-
lation. If efficiency is a concern, these gradients can be replaced by the gradients in the template

11We follow the convention, commonly used in robotics and in (Baker and Matthews 2004), that derivatives with
respect to (column) vectors result in row vectors, so that fewer transposes are needed in the formulas.

12The true Hessian is the full second derivative of the error function E, which may not be positive definite.

24



(a) (b) (c)

Figure 11: Aperture problems for different image patches: (a) stable (“corner-like”) flow; (b) classic
aperture problem (barber-pole illusion); (c) textureless region.

image,
J1(xi + u) ≈ J0(x), (85)

since near the correct alignment, the template and displaced target images should look similar.
This has the advantage of allowing the pre-computation of the Hessian and Jacobian images, which
can result in significant computational savings (Hager and Belhumeur 1998, Baker and Matthews
2004). A further reduction in computation can be obtained by writing the warped image I1(xi +u)

used to compute ei in (80) as a convolution of a sub-pixel interpolation filter with the discrete
samples in I1 (Peleg and Rav-Acha 2006). Precomputing the inner product between the gradient
field and shifted version of I1 allows the iterative re-computation of ei to be performed in constant
time (independent of the number of pixels).

The effectiveness of the above incremental update rule relies on the quality of the Taylor series
approximation. When far away from the true displacement (say 1-2 pixels), several iterations
may be needed. (It is possible, however, to estimate a value for J1 using a least-squares fit to
a series of larger displacements in order to increase the range of convergence (Jurie and Dhome
2002).) When started in the vicinity of the correct solution, only a few iterations usually suffice.
A commonly used stopping criterion is to monitor the magnitude of the displacement correction
‖u‖ and to stop when it drops below a certain threshold (say 1/10

th of a pixel). For larger motions,
it is usual to combine the incremental update rule with a hierarchical coarse-to-fine search strategy,
as described in §3.2.

Conditioning and aperture problems. Sometimes, the inversion of the linear system (81) can
be poorly conditioned because of lack of two-dimensional texture in the patch being aligned. A
commonly occurring example of this is the aperture problem, first identified in some of the early

25



papers on optic flow (Horn and Schunck 1981) and then studied more extensively by Anandan
(1989). Consider an image patch that consists of a slanted edge moving to the right (Figure 11).
Only the normal component of the velocity (displacement) can be reliably recovered in this case.
This manifests itself in (81) as a rank-deficient matrix A, i.e., one whose smaller eigenvalue is
very close to zero.13

When equation (81) is solved, the component of the displacement along the edge is very poorly
conditioned and can result in wild guesses under small noise perturbations. One way to mitigate
this problem is to add a prior (soft constraint) on the expected range of motions (Simoncelli et al.
1991, Baker et al. 2004, Govindu 2006). This can be accomplished by adding a small value to the
diagonal of A, which essentially biases the solution towards smaller ∆u values that still (mostly)
minimize the squared error.

However, the pure Gaussian model assumed when using a simple (fixed) quadratic prior, as in
(Simoncelli et al. 1991), does not always hold in practice, e.g., because of aliasing along strong
edges (Triggs 2004). For this reason, it may be prudent to add some small fraction (say 5%) of the
larger eigenvalue to the smaller one before doing the matrix inversion.

Uncertainty modeling The reliability of a particular patch-based motion estimate can be cap-
tured more formally with an uncertainty model. The simplest such model is a covariance matrix,
which captures the expected variance in the motion estimate in all possible directions. Under small
amounts of additive Gaussian noise, it can be shown that the covariance matrix Σu is proportional
to the inverse of the HessianA,

Σu = σ2
nA−1, (86)

where σ2
n is the variance of the additive Gaussian noise (Anandan 1989, Matthies et al. 1989,

Szeliski 1989). For larger amounts of noise, the linearization performed by the Lucas-Kanade
algorithm in (78) is only approximate, so the above quantity becomes theCramer-Rao lower bound
on the true covariance. Thus, the minimum and maximum eigenvalues of the Hessian A can now
be interpreted as the (scaled) inverse variances in the least-certain and most-certain directions of
motion. (A more detailed analysis using a more realistic model of image noise can be found in
(Steele and Jaynes 2005).)

Bias and gain, weighting, and robust error metrics. The Lucas-Kanade update rule can also
be applied to the bias-gain equation (52) to obtain

ELK−BG(u + ∆u) =
∑

i

[J1(xi + u)∆u + ei − αI0(xi) − β]2 (87)

13The matrix A is by construction always guaranteed to be symmetric positive semi-definite, i.e., it has real non-
negative eigenvalues.

26



(Lucas and Kanade 1981, Gennert 1988, Fuh andMaragos 1991, Baker et al. 2003b). The resulting
4×4 system of equations in can be solved to simultaneously estimate the translational displacement
update ∆u and the bias and gain parameters β and α.14

A similar formulation can be derived for images (templates) that have a linear appearance
variation,

I1(x + u) ≈ I0(x) +
∑

j

λjBj(x), (88)

where the Bj(x) are the basis images and the λj are the unknown coefficients (Hager and Bel-
humeur 1998, Baker et al. 2003a, Baker et al. 2003b). Potential linear appearance variations in-
clude illumination changes (Hager and Belhumeur 1998) and small non-rigid deformations (Black
and Jepson 1998).

A weighted (windowed) version of the Lucas-Kanade algorithm is also possible,

ELK−WSSD(u + ∆u) =
∑

i

w0(x)w1(xi + u)[J1(xi + u)∆u + ei]
2. (89)

Note that here, in deriving the Lucas-Kanade update from the original weighted SSD function
(48), we have neglected taking the derivative of w1(xi + u) weighting function with respect to u,
which is usually acceptable in practice, especially if the weighting function is a binary mask with
relatively few transitions.

Baker et al. (2003a) only use the w0(x) term, which is reasonable if the two images have
the same extent and no (independent) cutouts in the overlap region. They also discuss the idea
of making the weighting proportional to ∇I(x), which helps for very noisy images, where the
gradient itself is noisy. Similar observation, formulated in terms of total least squares (Huffel and
Vandewalle 1991), have been made by other researchers studying optic flow (motion) estimation
(Weber and Malik 1995, Bab-Hadiashar and Suter 1998, Mühlich and Mester 1998). Lastly, Baker
et al. (2003a) show how evaluating (89) at just the most reliable (highest gradient) pixels does
not significantly reduce performance for large enough images, even if only 5%-10% of the pixels
are used. (This idea was originally proposed by Dellaert and Collins (1999), who used a more
sophisticated selection criterion.)

The Lucas-Kanade incremental refinement step can also be applied to the robust error metric
introduced in §3.1,

ELK−SRD(u + ∆u) =
∑

i

ρ(J1(xi + u)∆u + ei). (90)

We can take the derivative of this function w.r.t. u and set it to 0,
∑

i

ψ(ei)
∂ei

∂u
=

∑

i

ψ(ei)J1(x + u) = 0, (91)

14In practice, it may be possible to decouple the bias-gain and motion update parameters, i.e., to solve two indepen-
dent 2 × 2 systems, which is a little faster.

27



where Ψ(e) = ρ′(e) is the derivative of ρ. If we introduce a weight function w(e) = Ψ(e)/e, we
can write this as

∑

i

w(ei)J
T
1 (x + u)[J1(xi + u)∆u + ei] = 0. (92)

This results in the Iteratively Re-weighted Least Squares algorithm, which alternates between com-
puting the weight functions w(ei) and solving the above weighted least squares problem (Hu-
ber 1981, Stewart 1999). Alternative incremental robust least squares algorithms can be found
in (Sawhney and Ayer 1996, Black and Anandan 1996, Black and Rangarajan 1996, Baker et
al. 2003a) and textbooks and tutorials on robust statistics (Huber 1981, Hampel et al. 1986,
Rousseeuw and Leroy 1987, Stewart 1999).

3.5 Parametric motion
Many image alignment tasks, for example image stitching with handheld cameras, require the use
of more sophisticated motion models, as described in §2. Since these models typically have more
parameters than pure translation, a full search over the possible range of values is impractical.
Instead, the incremental Lucas-Kanade algorithm can be generalized to parametric motion models
and used in conjunction with a hierarchical search algorithm (Lucas and Kanade 1981, Rehg and
Witkin 1991, Fuh and Maragos 1991, Bergen et al. 1992a, Baker and Matthews 2004).

For parametric motion, instead of using a single constant translation vectoru, we use a spatially
varying motion field or correspondence map, x′(x; p), parameterized by a low-dimensional vector
p, where x′ can be any of the motion models presented in §2. The parametric incremental motion
update rule now becomes

ELK−PM(p + ∆p) =
∑

i

[I1(x
′(xi; p + ∆p)) − I0(xi)]

2 (93)

≈
∑

i

[I1(x
′
i) + J1(x

′
i)∆p − I0(xi)]

2 (94)

=
∑

i

[J1(x
′
i)∆p + ei]

2, (95)

where the Jacobian is now
J1(x

′
i) =

∂I1

∂p
= ∇I1(x

′
i)
∂x′

∂p
(xi), (96)

i.e., the product of the image gradient ∇I1 with the Jacobian of correspondence field, Jx′ =

∂x′/∂p.
Table 2 shows the motion Jacobians Jx′ for the 2D planar transformations introduced in §2.15

Note how I have re-parameterized the motion matrices so that they are always the identity at the
15The derivatives of the 3D rotational motion model introduced in §2.2 are given in §4.3.

28



Transform Matrix Parameters Jacobian Jx′

translation





1 0 tx
0 1 ty





(tx, ty)





1 0

0 1





Euclidean





cθ −sθ tx
sθ cθ ty





(tx, ty, θ)





1 0 −sθx − cθy

0 1 cθx − sθy





similarity





1 + a −b tx
b 1 + a ty





(tx, ty, a, b)





1 0 x −y

0 1 y x





affine





1 + a00 a01 tx
a10 1 + a11 ty





(tx, ty, a00, a01, a10, a11)





1 0 x y 0 0

0 1 0 0 x y





projective









1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1









(h00, . . . , h21)
(see text)

Table 2: Jacobians of the 2D coordinate transformations.

origin p = 0. This will become useful below, when we talk about the compositional and inverse
compositional algorithms. (It also makes it easier to impose priors on the motions.)

The derivatives in Table 2 are all fairly straightforward, except for the projective 2-D motion
(homography), which requires a per-pixel division to evaluate, c.f. (8), re-written here in its new
parametric form as

x′ =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y′ =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (97)

The Jacobian is therefore

Jx′ =
∂x′

∂p
=

1

D





x y 1 0 0 0 −x′x −x′y

0 0 0 x y 1 −y′x −y′y



 , (98)

whereD is the denominator in (97), which depends on the current parameter settings (as do x′ and
y′).

For parametric motion, the (Gauss-Newton) Hessian and gradient-weighted residual vector
become

A =
∑

i

JT
x′(xi)[∇IT

1 (x′
i)∇I1(x

′
i)]Jx′(xi) (99)

and
b = −

∑

i

JT
x′(xi)[ei∇IT

1 (x′
i)]. (100)

29



Note how the expressions inside the square brackets are the same ones evaluated for the simpler
translational motion case (82–83).

Patch-based approximation. The computation of the Hessian and residual vectors for paramet-
ric motion can be significantly more expensive than for the translational case. For parametric
motion with n parameters and N pixels, the accumulation of A and b takes O(n2N) operations
(Baker and Matthews 2004). One way to reduce this by a significant amount is to divide the image
up into smaller sub-blocks (patches) Pj and to only accumulate the simpler 2× 2 quantities inside
the square brackets at the pixel level (Shum and Szeliski 2000),

Aj =
∑

i∈Pj

∇IT
1 (x′

i)∇I1(x
′
i) (101)

bj =
∑

i∈Pj

ei∇IT
1 (x′

i). (102)

The full Hessian and residual can then be approximated as

A ≈
∑

j

JT
x′(x̂j)[

∑

i∈Pj

∇IT
1 (x′

i)∇I1(x
′
i)]Jx′(x̂j) =

∑

j

JT
x′(x̂j)AjJx′(x̂j) (103)

and
b ≈ −

∑

j

JT
x′(x̂j)[

∑

i∈Pj

ei∇IT
1 (x′

i)] = −
∑

j

JT
x′(x̂j)bj , (104)

where x̂j is the center of each patch Pj (Shum and Szeliski 2000). This is equivalent to replacing
the true motion Jacobian with a piecewise-constant approximation. In practice, this works quite
well. The relationship of this approximation to feature-based registration is discussed in §4.4.

Compositional approach For a complex parametric motion such as a homography, the compu-
tation of the motion Jacobian becomes complicated, and may involve a per-pixel division. Szeliski
and Shum (1997) observed that this can be simplified by first warping the target image I1 according
to the current motion estimate x′(x; p),

Ĩ1(x) = I1(x
′(x; p)), (105)

and then comparing this warped image against the template I0(x),

ELK−SS(∆p) =
∑

i

[Ĩ1(x̃(xi;∆p)) − I0(xi)]
2

≈
∑

i

[J̃1(xi)∆p + ei]
2 (106)

=
∑

i

[∇Ĩ1(xi)Jx̃(xi)∆p + ei]
2. (107)

30



Note that since the two images are assumed to be fairly similar, only an incremental parametric
motion is required, i.e., the incremental motion can be evaluated around p = 0, which can lead
to considerable simplifications. For example, the Jacobian of the planar projective transform (97)
now becomes

Jx̃ =
∂x̃

∂p

∣

∣

∣

∣

∣

p=0

=





x y 1 0 0 0 −x2 −xy

0 0 0 x y 1 −xy −y2



 . (108)

Once the incremental motion x̃ has been computed, it can be prepended to the previously estimated
motion, which is easy to do for motions represented with transformation matrices, such as those
given in Tables 1 and 2. Baker and Matthews (2004) call this the forward compositional algorithm,
since the target image is being re-warped, and the final motion estimates are being composed.

If the appearance of the warped and template images is similar enough, we can replace the
gradient of Ĩ1(x) with the gradient of I0(x), as suggested previously in (85). This has potentially
a big advantage in that it allows the pre-computation (and inversion) of the Hessian matrix A

given in (99). The residual vector b (100) can also be partially precomputed, i.e., the steepest
descent images∇I0(x)Jx̃(x) can precomputed and stored for later multiplicationwith the e(x) =

Ĩ1(x) − I0(x) error images (Baker and Matthews 2004). This idea was first suggested by Hager
and Belhumeur (1998) in what Baker and Matthews (2004) call a forward additive scheme.

Baker and Matthews (2004) introduce one more variant they call the inverse compositional
algorithm. Rather than (conceptually) re-warping the warped target image Ĩ1(x), they instead
warp the template image I0(x) and minimize

ELK−BM(∆p) =
∑

i

[Ĩ1(xi) − I0(x̃(xi;∆p))]2

≈
∑

i

[∇I0(xi)Jx̃(xi)∆p − ei]
2. (109)

This is identical to the forward warped algorithm (107) with the gradients ∇Ĩ1(x) replaced by
the gradients ∇I0(x), except for the sign of ei. The resulting update ∆p is the negative of the
one computed by the modified (107), and hence the inverse of the incremental transformation
must be prepended to the current transform. Because the inverse compositional algorithm has the
potential of pre-computing the inverse Hessian and the steepest descent images, this makes it the
preferred approach of those surveyed in (Baker and Matthews 2004). Figure 12, taken from (Baker
et al. 2003a), beautifully shows all of the steps required to implement the inverse compositional
algorithm.

Baker and Matthews (2004) also discusses the advantage of using Gauss-Newton iteration (i.e.,
the first order expansion of the least squares, as above) vs. other approaches such as steepest de-
scent and Levenberg-Marquardt. Subsequent parts of the series (Baker et al. 2003a, Baker et al.
2003b, Baker et al. 2004) discuss more advanced topics such as per-pixel weighting, pixel selec-
tion for efficiency, a more in-depth discussion of robust metrics and algorithms, linear appearance

31



Figure 12: A schematic overview of the inverse compositional algorithm (copied, with permission, from
(Baker et al. 2003a)). Steps 3-6 (light-color arrows) are performed once as a pre-computation. The main
algorithm simply consists of iterating: image warping (Step 1), image differencing (Step 2), image dot
products (Step 7), multiplication with the inverse of the Hessian (Step 8), and the update to the warp (Step
9). All of these steps can be performed efficiently.

32



variations, and priors on parameters. They make for invaluable reading for anyone interested in
implementing a highly tuned implementation of incremental image registration.

4 Feature-based registration
As I mentioned earlier, directly matching pixel intensities is just one possible approach to image
registration. The other major approach is to first extract distinctive features from each image,
to match these features to establish a global correspondence, and to then estimate the geometric
transformation between the images. This kind of approach has been used since the early days
of stereo matching (Hannah 1974, Moravec 1983, Hannah 1988) and has more recently gained
popularity for image stitching applications (Zoghlami et al. 1997, Capel and Zisserman 1998,
Cham and Cipolla 1998, Badra et al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe
2003, Brown et al. 2005).

In this section, I review methods for detecting distinctive points, for matching them, and for
computing the image registration, including the 3D rotation model introduced in §2.2. I also dis-
cuss the relative advantages and disadvantages of direct and feature-based approaches.

4.1 Keypoint detectors
As we saw in §3.4, the reliability of a motion estimate depends most critically on the size of the
smallest eigenvalue of the image Hessian matrix, λ0 (Anandan 1989). This makes it a reason-
able candidate for finding points in the image that can be matched with high accuracy. (Older
terminology in this field talked about “corner-like” features (Moravec 1983), but the modern usage
is keypoints, interest points, or salient points.) Indeed, Shi and Tomasi (1994) propose using this
quantity to find good features to track, and then use a combination of translational and affine-based
patch alignment to track such points through an image sequence.

Using a square patch with equal weighting may not be the best choice. Instead, a Gaussian
weighting function can be used. Förstner (1986) and Harris and Stephens (1988) both proposed
finding keypoints using such an approach. The Hessian and eigenvalue images can be efficiently
evaluated using a sequence of filters and algebraic operations,

Gx(x) =
∂

∂x
Gσd

(x) ∗ I(x), (110)

Gy(x) =
∂

∂y
Gσd

(x) ∗ I(x), (111)

B(x) =





G2
x(x) Gx(x)Gy(x)

Gx(x)Gy(x) G2
y(x)



 , (112)

33



A(x) = Gσi
(x) ∗ B(x) (113)

λ0,1(x) =
a00 + a11 ∓

√

(a00 − a11)2 + a01a10

2
, (114)

where Gσd
is a noise-reducing pre-smoothing “derivative” filter of width σd, and Gσi

is the in-
tegration filter whose scale σi controls the effective patch size. (The aij are the entries in the
A(x) matrix, where I have dropped the (x) for succinctness.) For example, Förstner (1994) uses
σd = 0.7 and σi = 2. Once the minimum eigenvalue image has been computed, local maxima can
be found as potential keypoints.

The minimum eigenvalue is not the only quantity that can be used to find keypoints. A simpler
quantity, proposed by Harris and Stephens (1988) is

det(A) − α trace(A)2 = λ0λ1 − α(λ0 + λ1)
2 (115)

with α = 0.06. Triggs (2004) suggest using the quantity

λ0 − αλ1 (116)

(say with α = 0.05), which reduces the response at 1D edges, where aliasing errors sometimes
affect the smaller eigenvalue. He also shows how the basic 2 × 2 Hessian can be extended to
parametric motions to detect points that are also accurately localizable in scale and rotation. Brown
et al. (2005), on the other hand, use the harmonic mean,

det A

tr A
=

λ0λ1

λ0 + λ1
, (117)

which is a smoother function in the region where λ0 ≈ λ1. Figure 13 shows isocontours of the
various interest point operators (note that all the detectors require both eigenvalues to be large).
Figure 14 shows the output of the multi-scale oriented patch detector of Brown et al. (2005) at 5
different scales.

Schmid et al. (2000) survey the vast literature on keypoint detection and perform some exper-
imental comparisons to determine the repeatability of feature detectors, which is defined as the
frequency with which keypoints detected in one image are found within ε = 1.5 pixels of the cor-
responding location in a warped image. They also measure the information content available at
each detected feature point, which they define as the entropy of a set of rotationally invariant local
grayscale descriptors. Among the techniques they survey, they find that an improved version of the
Harris operator with σd = 1 and σi = 2 works best.

More recently, feature detectors that are more invariant to scale (Lowe 2004, Mikolajczyk and
Schmid 2004) and affine transformations (Baumberg 2000, Kadir and Brady 2001, Schaffalitzky
and Zisserman 2002, Mikolajczyk et al. 2005) have been proposed. These can be very useful when

34



0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

λ0

λ 1

Harris
Harmonic mean
Shi−Tomasi

Figure 13: Isocontours of popular keypoint detection functions (taken from (Brown et al. 2004)). Each
detector looks for points where the eigenvalues λ0,λ1 of H =

∫

R∇I∇IT dx are both large.

Figure 14: Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels (taken from (Brown et
al. 2004)). The boxes show the feature orientation and the region from which the descriptor vectors are
sampled.

35



matching images that have different scales or aspects (e.g., for 3D object recognition). A simple
way to achieve scale invariance is to look for scale-space maxima of Difference of Gaussian (DoG)
(Lindeberg 1990, Lowe 2004) or Harris corner (Mikolajczyk and Schmid 2004, Triggs 2004) detec-
tors computed over a sub-octave pyramid, i.e., an image pyramid where the subsampling between
adjacent levels is less than a factor of two. Lowe’s original (2004) paper uses a half-octave (

√
2)

pyramid, whereas Triggs (2004) recommends using a quarter-octave ( 4
√

2). The area of feature
point detectors and descriptors continues to be very active, with papers appearing every year at ma-
jor computer vision conferences (Carneiro and Jepson 2005, Kenney et al. 2005, Bay et al. 2006,
Platel et al. 2006, Rosten and Drummond 2006)—see the recent survey and comparison of affine
region detectors by Mikolajczyk et al. (2005).

Of course, keypoints are not the only kind of features that can be used for registering images.
Zoghlami et al. (1997) use line segments as well as point-like features to estimate homographies
between pairs of images, whereas (Bartoli et al. 2004) use line segments with local correspon-
dences along the edges to extract 3D structure and motion. Tuytelaars and Van Gool (2004) use
affine invariant regions to detect correspondences for wide baseline stereo matching. Matas et al.
(2004) detect maximally stable regions, using an algorithm related to watershed detection, whereas
Kadir et al. (2004) detect salient regions where patch entropy and its rate of change with scale are
locally maximal. (Corso and Hager (2005) use a related technique to fit 2-D oriented Gaussian ker-
nels to homogeneous regions.) While these techniques can all be used to solve image registration
problems, they will not be covered in more detail in this survey.

4.2 Feature matching
After detecting the features (keypoints), we must match them, i.e., determine which features come
from corresponding locations in different images. In some situations, e.g., for video sequences (Shi
and Tomasi 1994) or for stereo pairs that have been rectified (Loop and Zhang 1999, Scharstein
and Szeliski 2002), the local motion around each feature point may be mostly translational. In this
case, the error metrics introduced in §3.1 such as ESSD or ENCC can be used to directly compare
the intensities in small patches around each feature point. (The comparative study by Mikolajczyk
and Schmid (2005) discussed below uses cross-correlation.) Because feature points may not be ex-
actly located, a more accurate matching score can be computed by performing incremental motion
refinement as described in §3.4, but this can be time consuming, and can sometimes even decrease
performance (Brown et al. 2005).

If features are being tracked over longer image sequences, their appearance can undergo larger
changes. In this case, it makes sense to compare appearances using an affine motion model. Shi
and Tomasi (1994) compare patches using a translational model between neighboring frames, and
then use the location estimate produced by this step to initialize an affine registration between

36



the patch in the current frame and the base frame where a feature was first detected. In fact,
features are only detected infrequently, i.e., only in region where tracking has failed. In the usual
case, an area around the current predicted location of the feature is searched with an incremental
registration algorithm. This kind of algorithm is a detect then track approach, since detection
occurs infrequently. It is appropriate for video sequences where the expected locations of feature
points can be reasonably well predicted.

For larger motions, or for matching collections of images where the geometric relationship
between them is unknown (Schaffalitzky and Zisserman 2002, Brown and Lowe 2003), a detect
then match approach in which feature points are first detected in all images is more appropriate.
Because the features can appear at different orientations or scales, a more view invariant kind of
representation must be used. Mikolajczyk and Schmid (2005) review some recently developed
view-invariant local image descriptors and experimentally compare their performance.

The simplest method to compensate for in-plane rotations is to find a dominant orientation
at each feature point location before sampling the patch or otherwise computing the descriptor.
Brown et al. (2005) use the direction of the average gradient orientation, computed within a small
neighborhood of each feature point, whereas Lowe (2004) (as well as Mikolajczyk and Schmid
(2005)) look for a peak in the local gradient orientation histogram. The descriptor can be made
invariant to scale by only selecting feature points that are local maxima in scale space, as discussed
in §4.1. Making the descriptors invariant to affine deformations (stretch, squash, skew) is even
harder (Baumberg 2000, Schaffalitzky and Zisserman 2002). Mikolajczyk and Schmid (2004) use
the local second moment matrix around a feature point to define a canonical frame, whereas Corso
and Hager (2005) fit 2-D oriented Gaussian kernels to homogeneous regions and store the weighted
region statistics.

Among the local descriptors that Mikolajczyk and Schmid (2005) compared, they found that
David Lowe’s (2004) Scale Invariant Feature Transform (SIFT) generally performed the best, fol-
lowed by Freeman and Adelson’s (1991) steerable filters and then cross-correlation (which could
potentially be improved with an incremental refinement of location and pose—but see (Brown et
al. 2005)). Differential invariants, whose descriptors are insensitive to changes in orientation by
design, did not do as well.

SIFT features are computed by first estimating a local orientation using a histogram of the local
gradient orientations, which is potentially more accurate than just the average orientation. Once
the local frame has been established, gradients are copied into different orientation planes, and
blurred resampled versions of these images as used as the features. This provides the descriptor
with some insensitivity to small feature localization errors and geometric distortions (Lowe 2004).

Steerable filters are combinations of derivative of Gaussian filters that permit the rapid com-
putation of even and odd (symmetric and anti-symmetric) edge-like and corner-like features at all
possible orientations (Freeman and Adelson 1991). Because they use reasonably broad Gaussians,

37



Figure 15: MOP descriptors are formed using an 8 × 8 sampling of bias/gain normalized intensity values,
with a sample spacing of 5 pixels relative to the detection scale (taken from (Brown et al. 2004)). This
low frequency sampling gives the features some robustness to keypoint location error, and is achieved by
sampling at a higher pyramid level than the detection scale.

they too are somewhat insensitive to localization and orientation errors.
For tasks that do not exhibit large amounts of foreshortening, such as image stitching, simple

normalized intensity patches perform reasonably well and are simple to implement (Brown et al.
2005) (Figure 15). The field of feature descriptors continues to evolve rapidly, with newer results
including a principal component analysis (PCA) of SIFT feature descriptors (Ke and Sukthankar
2004) and descriptors that include local color information (van de Weijer and Schmid 2006).

Rapid indexing and matching. The simplest way to find all corresponding feature points in an
image pair is to compare all the features in one image against all the features in the other, using one
of the local descriptors described above. Unfortunately, this is quadratic in the expected number
of features, which makes it impractical for some applications.

More efficient matching algorithms can be devised using different kinds of indexing schemes,
many of which are based on the idea of finding nearest neighbors in high-dimensional spaces. For
example, Nene and Nayar (1997) developed a technique they call slicing that uses a series of 1D
binary searches to efficiently cull down a list of candidate points that lie within a hypercube of the
query point. They also provide a nice review of previous work in this area, including spatial data
structures such as k-d trees (Samet 1989). Beis and Lowe (1997) propose a Best-Bin-First (BBF)
algorithm, which uses a modified search ordering for a k-d tree algorithm so that bins in feature
space are searched in the order of their closest distance from query location. Shakhnarovich et
al. (2003) extend a previously developed technique called locality-sensitive hashing, which uses
unions of independently computed hashing functions, to be more sensitive to the distribution of
points in parameter space, which they call parameter-sensitive hashing. Brown et al. (2005) hash
the first three (non-constant) Haar wavelets from an 8× 8 image patch. Even more recently, Nister
and Stewenius (2006) use a metric tree, which consists of comparing feature descriptors to a small

38



number of prototypes at each level in a hierarchy. Despite all of this promising work, the rapid
computation of image feature correspondences is far from being a solved problem.

RANSAC and LMS. Once an initial set of feature correspondences has been computed, we
need to find a set that is will produce a high-accuracy alignment. One possible approach is to
simply compute a least squares estimate or to use a robustified (iteratively re-weighted) version of
least squares, as discussed below (§4.3). However, in many cases, it is better to first find a good
starting set of inlier correspondences, i.e., points that are all consistent with some particular motion
estimate.16

Two widely used solution to this problem are called RANdom SAmple Consensus, or RANSAC
for short (Fischler and Bolles 1981) and least median of squares (LMS) (Rousseeuw 1984). Both
techniques start by selecting (at random) a subset of k correspondences, which is then used to
compute a motion estimate p, as described in §4.3. The residuals of the full set of correspondences
are then computed as

ri = x̃′
i(xi; p) − x̂′

i, (118)

where x̃′
i are the estimated (mapped) locations, and x̂′

i are the sensed (detected) feature point
locations.

The RANSAC technique then counts the number of inliers that are within ε of their predicted
location, i.e., whose ‖ri‖ ≤ ε. (The ε value is application dependent, but often is around 1-3
pixels.) Least median of squares finds the median value of the ‖ri‖ values.

The random selection process is repeated S times, and the sample set with largest number of
inliers (or with the smallest median residual) is kept as the final solution. Either the initial param-
eter guess p or the full set of computed inliers is then passed on to the next data fitting stage. In a
more recently developed version of RANSAC called PROSAC (PROgressive SAmple Consensus),
random samples are initially added from the most “confident” matches, thereby speeding up the
process of finding a (statistically) likely good set of inliers (Chum and Matas 2005).

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient
number of trials S must be tried. Let p be the probability that any given correspondence is valid,
and P be the total probability of success after S trials. The likelihood in one trial that all k random
samples are inliers is pk. Therefore, the likelihood that S such trials will all fail is

1 − P = (1 − pk)S (119)

and the required minimum number of trials is

S =
log(1 − P )

log(1 − pk)
. (120)

16For direct estimation methods, hierarchical (coarse-to-fine) techniques are often used to lock onto the dominant
motion in a scene (Bergen et al. 1992a, Bergen et al. 1992b).

39



Stewart (1999) gives the following examples of the required number of trials S to attain a 99%
probability of success:

k p S

3 0.5 35

6 0.6 97

6 0.5 293

.

As you can see, the number of trials grows quickly with the number of sample points used. This
provides a strong incentive to use the minimum number of sample points k possible for any given
trial, which in practice is how RANSAC is normally used.

4.3 Geometric registration
Once we have computed a set of matched feature point correspondences, the next step is to estimate
the motion parameters p that best register the two images. The usual way to do this is to use least
squares, i.e., to minimize the sum of squared residuals given by (118),

ELS =
∑

i

‖ri‖2 = ‖x̃′
i(xi; p) − x̂′

i‖2. (121)

Many of the motion models presented in §2, i.e., translation, similarity, and affine, have a linear
relationship between the motion and the unknown parameters p.17 In this case, a simple linear
regression (least squares) using normal equationsAp = b works well.

Uncertainty weighting and robust regression. The above least squares formulation assumes
that all feature points are matched with the same accuracy. This is often not the case, since certain
points may fall in more textured regions than others. If we associate a variance estimate σ2

i with
each correspondence, we can minimize weighted least squares instead,

EWLS =
∑

i

σ−2
i ‖ri‖2. (122)

As discussed in §3.4, a covariance estimate for patch-based matching can be obtained by multi-
plying the inverse of the Hessian with the per-pixel noise estimate (86). Weighting each squared
residual by the inverse covariance Σ−1

i = σ−2
n Ai (which is called the information matrix), we

obtain
ECWLS =

∑

i

‖ri‖2
Σ−1

i
=

∑

i

rT
i Σ

−1
i ri =

∑

i

σ−2
n rT

i Airi, (123)

whereAi is the patch Hessian (101).
172-D Euclidean motion can be estimated with a linear algorithm by first estimating the cosine and sine entries

independently, and then normalizing them so that their magnitude is 1.

40



If there are outliers among the feature-based correspondences (and there almost always are), it
is better to use a robust version of least squares, even if an initial RANSAC or MLS stage has been
used to select plausible inliers. The robust least squares cost metric (analogous to (45)) is then

ERLS(u) =
∑

i

ρ(‖ri‖Σ−1

i
). (124)

As before, a commonly used approach to minimize this quantity is to use iteratively re-weighted
least squares, as described in §3.4.

Homography update. For non-linear measurement equations such as the homography given in
(97), rewritten here as

x̂′ =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and ŷ′ =

h10x + (1 + h11)y + h12

h20x + h21y + 1
, (125)

an iterative solution is required to obtain accurate results. An initial guess for the 8 unknowns
{h00, . . . , h21} can be obtained by multiplying both sides of the equations through by the denomi-
nator, which yields the linear set of equations,





x̂′ − x

ŷ′ − y



 =





x y 1 0 0 0 −x̂′x −x̂′y

0 0 0 x y 1 −ŷ′x −ŷ′y















h00
...

h21











. (126)

However, this is not optimal from a statistical point of view, since the denominator can vary quite
a bit from point to point.

One way to compensate for this is to re-weight each equation by the inverse of current estimate
of the denominator,D,

1

D





x̂′ − x

ŷ′ − y



 =
1

D





x y 1 0 0 0 −x̂′x −x̂′y

0 0 0 x y 1 −ŷ′x −ŷ′y















h00
...

h21











. (127)

While this may at first seem to be the exact same set of equations as (126), because least squares
is being used to solve the over-determined set of equations, the weightings do matter and produce
a different set of normal equations that performs better in practice (with noisy data).

The most principled way to do the estimation, however, is to directly minimize the squared
residual equations (118) using the Gauss-Newton approximation, i.e., performing a first-order Tay-
lor series expansion in p, which yields,

x̂′
i − x̃′

i(xi; p) = Jx′∆p (128)

41



or




x̂′ − x̃′

ŷ′ − ỹ′



 =
1

D





x y 1 0 0 0 −x̃′x −x̃′y

0 0 0 x y 1 −ỹ′x −ỹ′y















∆h00
...

∆h21











. (129)

While this looks similar to (127), it differs in two important respects. First, the left hand side
consists of unweighted prediction errors rather than pixel displacements, and the solution vector
is a perturbation to the parameter vector p. Second the quantities inside Jx′ involve predicted
feature locations (x̃′, ỹ′) instead of sensed feature locations (x̂′, ŷ′). Both of these are subtle and
yet they lead to an algorithm that, when combined with proper checking for downhill steps (as in
the Levenberg-Marquardt algorithm), will converge to a minimum. (Iterating the (127) equations
is not guaranteed to do so, since it is not minimizing a well-defined energy function.)

The above formula is analogous to the additive algorithm for direct registration since the change
to the full transformation is being computed §3.5. If we prepend an incremental homography to the
current homography instead, i.e., we use a compositional algorithm, we get D = 1 (since p = 0)
and the above formula simplifies to





x̂′ − x

ŷ′ − y



 =





x y 1 0 0 0 −x2 −xy

0 0 0 x y 1 −xy −y2















∆h00
...

∆h21











, (130)

where I have replaced (x̃′, ỹ′) with (x, y) for conciseness. (Notice how this results in the same
Jacobian as (108).)

Rotational panorama update. As described in §2.2, representing the alignment of images in a
panorama using a collection of rotation matrices and focal lengths results in a much more stable
estimation problem than directly using homographies (Szeliski 1996, Szeliski and Shum 1997).
Given this representation, how do we update the rotation matrices to best align two overlapping
images?

Recall from (18–19) that the equations relating two views can be written as

x̃1 ∼ H̃10x̃0 with H̃10 = K1R10K
−1
0 , (131)

where Kk = diag(fk, fk, 1) is the calibration matrix and R10 = R1R
−1
0 is rotation between the

two views. The best way to update R10 is to prepend an incremental rotation matrix R(%ω) to the
current estimateR10 (Szeliski and Shum 1997, Shum and Szeliski 2000),

H̃(%ω) = K1R(%ω)R10K
−1
0 = [K1R(%ω)K−1

1 ][K1R10K
−1
0 ] = DH̃10. (132)

42



Note that here I have written the update rule in the compositional form, where the incremental
update D is prepended to the current homography H̃10. Using the small-angle approximation to
R(%ω) given in (26), we can write the incremental update matrix as

D = K1R(%ω)K−1
1 ≈ K1(I + [%ω]×)K−1

1 =









1 −ωz f1ωy

ωz 1 −f1ωx

−ωy/f1 ωx/f1 1









. (133)

Notice how there is now a nice one-to-one correspondence between the entries in the D matrix
and the h00, . . . , h21 parameters used in Table 2 and (125), i.e.,

(h00, h01, h02, h00, h11, h12, h20, h21) = (0,−ωz, f1ωy,ωz, 0,−f1ωx,−ωy/f1,ωx/f1). (134)

We can therefore apply the chain rule to (130) and (134) to obtain




x̂′ − x

ŷ′ − y



 =





−xy/f1 f1 + x2/f1 −y

−(f1 + y2/f1) xy/f1 x













ωx

ωy

ωz









, (135)

which give us the linearized update equations needed to estimate %ω = (ωx,ωy,ωz).18 Notice that
this update rule depends on the focal length f1 of the target view, and is independent of the focal
length f0 of the template view. This is because the compositional algorithm essentially makes
small perturbations to the target. Once the incremental rotation vector %ω has been computed, the
R1 rotation matrix can be updated usingR1 ← R(%ω)R1.

The formulas for updating the focal length estimates are a little more involved, and are given
in (Shum and Szeliski 2000). I will not repeat them here, since an alternative update rule, based on
minimizing the difference between back-projected 3D rays, will be given in §5.1. Figure 16 shows
the alignment of four images under the 3D rotation motion model.

Focal length initialization. In order to initialize the 3D rotation model, we need to simultane-
ously estimate the focal length(s) of the camera(s) and an initial guess for a rotation matrix. This
can be obtained directly from a homography-based (planar perspective) alignment H̃10, using the
formulas first presented in (Szeliski and Shum 1997).

Using the simplified form of the calibration matrices Kk = diag(fk, fk, 1) first used in (19),
we can rewrite (131) as

R10 ∼ K−1
1 H̃10K0 ∼









h00 h01 f−1
0 h02

h10 h11 f−1
0 h12

f1h20 f1h21 f−1
0 f1h22









, (136)

18This is the same as the rotational component of instantaneous rigid flow (Bergen et al. 1992a) and the same as the
update equations given in (Szeliski and Shum 1997, Shum and Szeliski 2000).

43



Figure 16: Four images taken with a hand-held model registered using a 3D rotation motion model (from
(Szeliski and Shum 1997)). Notice how the homographies, rather than being arbitrary, have a well defined
keystone shape whose width increases away from the origin.

where the hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrixR10 and the fact that the right hand

side of (136) is known only up to a scale, we obtain

h2
00 + h2

01 + f−2
0 h2

02 = h2
10 + h2

11 + f−2
0 h2

12 (137)

and
h00h10 + h01h11 + f−2

0 h02h12 = 0. (138)

From this, we can compute estimates for f0 of

f 2
0 =

h2
12 − h2

02

h2
00 + h2

01 − h2
10 − h2

11

if h2
00 + h2

01 .= h2
10 + h2

11 (139)

or
f 2

0 = − h02h12

h00h10 + h01h11
if h00h10 .= −h01h11. (140)

(Note that the equations given in (Szeliski and Shum 1997) are erroneous; the correct equations
can be found in (Shum and Szeliski 2000).) If neither of these conditions holds, we can also take
the dot products between the first (or second) row and the third one. Similar result can be obtained
for f1 as well by analyzing the columns of H̃10. If the focal length is the same for both images, we

44



(a) (b)

Figure 17: Gap closing: (a) a gap is visible when the focal length is wrong (f = 510); (b) no gap is visible
for the correct focal length (f = 468).

can take the geometric mean of f0 and f1 as the estimated focal length f =
√

f1f0. When multiple
estimates of f are available, e.g., from different homographies, the median value can be used as
the final estimate.

Gap closing. The techniques presented in this section can be used to estimate a series of rotation
matrices and focal lengths, which can be chained together to create large panoramas. Unfortu-
nately, because of accumulated errors, this approach will rarely produce a closed 360◦ panorama.
Instead, there will invariably be either a gap or an overlap (Figure 17).

We can solve this problem by matching the first image in the sequence with the last one.
The difference between the two rotation matrix estimates associated with this frame indicates the
amount of misregistration. This error can be distributed evenly across the whole sequence by tak-
ing the quotient of the two quaternions associated with these rotations and dividing this “error
quaternion” by the number of images in the sequence (assuming relatively constant inter-frame
rotations). We can also update the estimated focal length based on the amount of misregistration.
To do this, we first convert the error quaternion into a gap angle, θg. We then update the focal
length using the equation f ′ = f(1 − θg/360◦).

Figure 17a shows the end of registered image sequence and the first image. There is a big gap
between the last image and the first which are in fact the same image. The gap is 32◦ because the
wrong estimate of focal length (f = 510) was used. Figure 17b shows the registration after closing
the gap with the correct focal length (f = 468). Notice that both mosaics show very little visual
misregistration (except at the gap), yet Figure 17a has been computed using a focal length which

45



has 9% error. Related approaches have been developed by (Hartley 1994, McMillan and Bishop
1995, Stein 1995, Kang and Weiss 1997) to solve the focal length estimation problem using pure
panning motion and cylindrical images.

Unfortunately, this particular gap-closing heuristic only works for the kind of “one-dimensional”
panorama where the camera is continuously turning in the same direction. In next section §5, I de-
scribe a different approach to removing gaps and overlaps that works for arbitrary camera motions.

4.4 Direct vs. feature-based alignment
Given that there exist these two alternative approaches to aligning images, which is preferable?

I used to be firmly in the direct matching camp (Irani and Anandan 1999). Early feature-based
methods seemed to get confused in regions that were either too textured or not textured enough.
The features would often be distributed unevenly over the images, thereby failing to match image
pairs that should have been aligned. Furthermore, establishing correspondences relied on simple
cross-correlation between patches surrounding the feature points, which did not work well when
the images were rotated or had foreshortening due to homographies.

Today, feature detection and matching schemes are remarkably robust, and can even be used for
known object recognition from widely separated views (Lowe 2004). Features not only respond
to regions of high “cornerness” (Förstner 1986, Harris and Stephens 1988), but also to “blob-like”
regions (Lowe 2004), as well as uniform areas (Tuytelaars and Van Gool 2004). Furthermore,
because they operate in scale-space and use a dominant orientation (or orientation invariant de-
scriptors), they can match images that differ in scale, orientation, and even foreshortening. My
own recent experience in working with feature-based approaches is that if the features are well
distributed over the image and the descriptors reasonably designed for repeatability, enough corre-
spondences to permit image stitching can usually be found (Brown et al. 2005).

The other major reason I used to prefer direct methods was that they make optimal use of the
information available in image alignment, since they measure the contribution of every pixel in the
image. Furthermore, assuming a Gaussian noisemodel (or a robustified version of it), they properly
weight the contribution of different pixels, e.g., by emphasizing the contribution of high-gradient
pixels. (See Baker et al. (2003a), who suggest that adding even more weight at strong gradients is
preferable because of noise in the gradient estimates.) One could argue that for a blurry image with
only slowly varying gradients, a direct approach will find an alignment, whereas a feature detector
will fail to find anything. However, such images rarely occur in practice in consumer imaging, and
the use of scale-space features means that some features can be found at lower resolutions.

The biggest disadvantage of direct techniques is that they have a limited range of convergence.
Even though they can be used in a hierarchical (coarse-to-fine) estimation framework, in practice it
is hard to use more than two or three levels of a pyramid before important details start to be blurred

46



away. For matching sequential frames in a video, the direct approach can usually be made to work.
However, for matching partially overlapping images in photo-based panoramas, they fail too often
to be useful. Our older systems for image stitching (Szeliski 1996, Szeliski and Shum 1997) relied
on Fourier-based correlation of cylindrical images and motion prediction to automatically align
images, but had to be corrected by hand for more complex sequences. Our newer system (Brown
et al. 2004, Brown et al. 2005) uses features and has a good success rate at automatically stitching
panoramas without any user intervention.

Is there no rôle then for direct registration? I believe there is. Once a pair of images has been
aligned with a feature-based approach, we can warp the two images to a common reference frame
and re-compute a more accurate estimate using patch-based alignment. Notice how there is a close
correspondence between the patch-based approximation to direct alignment given in (103–104)
and the inverse covariance weighted feature-based least squares error metric (123).

In fact, if we divide the template images up into patches and place an imaginary “feature
point” at the center of each patch, the two approaches return exactly the same answer (assuming
that the correct correspondences are found in each case). However, for this approach to succeed,
we still have to deal with “outliers”, i.e., regions that don’t fit the selected motion model due
to either parallax (§5.2) or moving objects (§6.2). While a feature-based approach may make it
somewhat easier to reason about outliers (features can be classified as inliers or outliers), the patch-
based approach, since it establishes correspondences more densely, is potentially more useful for
removing local mis-registration (parallax), as we discuss in §5.2.

5 Global registration
So far, I have discussed how to register pairs of images using both direct and feature-based methods
using a variety of motion models. In most applications, we are given more than a single pair of
images to register. The goal is then to find a globally consistent set of alignment parameters that
minimize the mis-registration between all pairs of images (Szeliski and Shum 1997, Shum and
Szeliski 2000, Sawhney and Kumar 1999, Coorg and Teller 2000). In order to do this, we need to
extend the pairwise matching criteria (44), (94), and (121) to a global energy function that involves
all of the per-image pose parameters (§5.1). Once we have computed the global alignment, we
often need to perform local adjustments such as parallax removal to reduce double images and
blurring due to local mis-registrations (§5.2). Finally, if we are given an unordered set of images
to register, we need to discover which images go together to form one or more panoramas. This
process of panorama recognition is described in §5.3.

47



5.1 Bundle adjustment
One way to register a large number of images is to add new images to the panorama one at a time,
aligning the most recent image with the previous ones already in the collection (Szeliski and Shum
1997), and discovering, if necessary, which images it overlaps (Sawhney and Kumar 1999). In
the case of 360◦ panoramas, accumulated error may lead to the presence of a gap (or excessive
overlap) between the two ends of the panorama, which can be fixed by stretching the alignment
of all the images using a process called gap closing (Szeliski and Shum 1997). However, a better
alternative is to simultaneously align all the images together using a least squares framework to
correctly distribute any mis-registration errors.

The process of simultaneously adjusting pose parameters for a large collection of overlapping
images is called bundle adjustment in the photogrammetry community (Triggs et al. 1999). In
computer vision, it was first applied to the general structure from motion problem (Szeliski and
Kang 1994) and then later specialized for panoramic image stitching (Shum and Szeliski 2000,
Sawhney and Kumar 1999, Coorg and Teller 2000).

In this section, I formulate the problem of global alignment using a feature-based approach,
since this results in a simpler system. An equivalent direct approach can be obtained either by di-
viding images into patches and creating a virtual feature correspondence for each one (as discussed
in §4.4 and (Shum and Szeliski 2000)), or by replacing the per-feature error metrics with per-pixel
metrics.

Consider the feature-based alignment problem given in (121), i.e.,

Epairwise−LS =
∑

i

‖ri‖2 = ‖x̃′
i(xi; p) − x̂′

i‖2. (141)

For multi-image alignment, instead of having a single collection of pairwise feature correspon-
dences, {(xi, x̂

′
i)}, we have a collection of n features, with the location of the ith feature point in

the jth image denoted by xij and its scalar confidence (inverse variance) denoted by cij.19 Each
image also has some associated pose parameters.

In this section, I assume that this pose consists of a rotation matrix Rj and a focal length
fj , although formulations in terms of homographies are also possible (Shum and Szeliski 1997,
Sawhney and Kumar 1999). The equation mapping a 3D point xi into a point xij in frame j can
be re-written from (15–19) as

x̃ij ∼ KjRjxi and xi ∼ R−1
j K−1

j x̃ij , (142)

where Kj = diag(fj , fj, 1) is the simplified form of the calibration matrix. The motion mapping
19Features that not seen in image j have cij = 0. We can also use 2 × 2 inverse covariance matrices Σ−1

ij in place
of cij , as shown in (123).

48



a point xij from frame j into a point xik in frame k is similarly given by

x̃ik ∼ H̃kjx̃ij = KkRkR
−1
j K−1

j x̃ij. (143)

Given an initial set of {(Rj, fj)} estimates obtained from chaining pairwise alignments, how do
we refine these estimates?

One approach is to directly extend the pairwise energy Epairwise−LS (141) to a multiview for-
mulation,

Eall−pairs−2D =
∑

i

∑

jk

cijcik‖x̃ik(x̂ij; Rj , fj, Rk, fk) − x̂ik‖2, (144)

where the x̃ik function is the predicted location of feature i in frame k given by (143), x̂ij is
the observed location, and the “2D” in the subscript indicates than an image-plane error is being
minimized (Shum and Szeliski 1997). Note that since x̃ik depends on the x̂ij observed value,
we actually have an errors-in-variable problem, which in principle requires more sophisticated
techniques than least squares to solve. However, in practice, if we have enough features, we can
directly minimize the above quantity using regular non-linear least squares and obtain an accurate
multi-frame alignment.20

While this approach works well in practice, it suffers from two potential disadvantages. First,
since a summation is taken over all pairs with corresponding features, features that are observed
many times get overweighted in the final solution. (In effect, a feature observed m times gets
counted

(

m
2

)

times instead of m times.) Second, the derivatives of x̃ik w.r.t. the {(Rj, fj)} are a
little cumbersome, although using the incremental correction to Rj introduced in §2.2 makes this
more tractable.

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to solve
not only for the pose parameters {(Rj, fj)} but also for the 3D point positions {xi},

EBA−2D =
∑

i

∑

j

cij‖x̃ij(xi; Rj, fj) − x̂ij‖2, (145)

where x̃ij(xi; Rj, fj) is given by (142). The disadvantage of full bundle adjustment is that there
are more variables to solve for, so both each iteration and the overall convergence may be slower.
(Imagine how the 3D points need to “shift” each time some rotation matrices are updated.) How-
ever, the computational complexity of each linearized Gauss-Newton step can be reduced using
sparse matrix techniques (Szeliski and Kang 1994, Hartley and Zisserman 2000, Triggs et al.
1999).

20While there exists an overall pose ambiguity in the solution, i.e., all theRj can be post-multiplied by an arbitrary
rotation Rg, a well-conditioned non-linear least squares algorithm such as Levenberg Marquardt will handle this
degeneracy without trouble.

49



An alternative formulation is to minimize the error in 3D projected ray directions (Shum and
Szeliski 2000), i.e.,

EBA−3D =
∑

i

∑

j

cij‖x̃i(x̂ij ; Rj , fj) − xi‖2, (146)

where x̃i(xij ; Rj, fj) is given by the second half of (142). This in itself has no particular advantage
over (145). In fact, since errors are being minimized in 3D ray space, there is a bias towards
estimating longer focal lengths, since the angles between rays become smaller as f increases.

However, if we eliminate the 3D rays xi, we can derive a pairwise energy formulated in 3D ray
space (Shum and Szeliski 2000),

Eall−pairs−3D =
∑

i

∑

jk

cijcik‖x̃i(x̂ij; Rj , fj) − x̃i(x̂ik; Rk, fk)‖2. (147)

This results in the simplest set of update equations (Shum and Szeliski 2000), since the fk can be
folded into the creation of the homogeneous coordinate vector as in (21). Thus, even though this
formula over-weights features that occur more frequently, it is the method used both by Shum and
Szeliski (2000) and in our current work (Brown et al. 2005). In order to reduce the bias towards
longer focal lengths, I multiply each residual (3D error) by

√

fjfk, which is similar to projecting
the 3D rays into a “virtual camera” of intermediate focal length, and which seems to work well in
practice.

Up vector selection. As mentioned above, there exists a global ambiguity in the pose of the 3D
cameras computed by the above methods. While this may not appear to matter, people have a pref-
erence for the final stitched image being “upright” rather than twisted or tilted. More concretely,
people are used to seeing photographs displayed so that the vertical (gravity) axis points straight
up in the image. Consider how you usually shoot photographs: while you may pan and tilt the
camera any which way, you usually keep vertical scene lines parallel to the vertical edge of the
image. In other words, the horizontal edge of your camera (its x-axis) usually stays parallel to the
ground plane (perpendicular to the world gravity direction).

Mathematically, this constraint on the rotation matrices can be expressed as follows. Recall
from (142) that the 3D→2D projection is given by

x̃ik ∼ KkRkxi. (148)

We wish to post-multiply each rotation matrixRk by a global rotationRg such that the projection
of the global y-axis, ̂ = (0, 1, 0) is perpendicular to the image x-axis, ı̂ = (1, 0, 0).21

21Note that here we use the convention common in computer graphics that the vertical world axis corresponds to y.
This is a natural choice if we wish the rotation matrix associated with a “regular” image taken horizontally to be the
identity, rather than a 90◦ rotation around the x-axis.

50



This constraint can be written as
ı̂T RkRĝ = 0 (149)

(note that the scaling by the calibration matrix is irrelevant here). This is equivalent to requiring
that the first row of Rk, rk0 = ı̂T Rk be perpendicular to the second column of Rg, rg1 = Rĝ.
This set of constraints (one per input image) can be written as a least squares problem,

rg1 = arg min
r

∑

k

(rT rk0)
2 = arg min

r
rT

[

∑

k

rk0r
T
k0

]

r. (150)

Thus, rg1 is the smallest eigenvector of the scatter or moment matrix spanned by the individual
camera rotation x-vectors, which should generally be of the form (c, 0, s) when the cameras are
upright.

To fully specify the Rg global rotation, we need to specify one additional constraint. This
is related to the view selection problem discussed in §6.1. One simple heuristic is to prefer the
average z-axis of the individual rotation matrices, k =

∑

k k̂
T
Rk to be close to the world z-axis,

rg2 = Rgk̂. We can therefore compute the full rotation matrixRg in three steps:

1. rg1 = min eigenvector (∑k rk0r
T
k0);

2. rg0 = N ((
∑

k rk2) × rg1);

3. rg2 = rg0 × rg1,

where N (v) = v/‖v‖ normalizes a vector v.

5.2 Parallax removal
Once we have optimized the global orientations and focal lengths of our cameras, we may find that
the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry or ghosted
in some places. This can be caused by a variety of factors, including unmodeled radial distortion,
3D parallax (failure to rotate the camera around its optical center), small scene motions such as
waving tree branches, and large-scale scene motions such as people moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial distortion can be es-
timated (potentially before the camera’s first use) using one of the techniques discussed in §2.4.
For example, the plumb line method (Brown 1971, Kang 2001, El-Melegy and Farag 2003) ad-
justs radial distortion parameters until slightly curved lines become straight, while mosaic-based
approaches adjust them until mis-registration is reduced in image overlap areas (Stein 1997, Sawh-
ney and Kumar 1999).

3D parallax can be attacked by doing a full 3D bundle adjustment, i.e., replacing the projection
equation (142) used in (145) with (15), which models camera translations. The 3D positions of the

51



matched features points and cameras can then be simultaneously recovered, although this can be
significantly more expensive that parallax-free image registration. Once the 3D structure has been
recovered, the scene could (in theory) be projected to a single (central) viewpoint that contains
no parallax. However, in order to do this, dense stereo correspondence needs to be performed
(Kumar et al. 1995, Szeliski and Kang 1995, Scharstein and Szeliski 2002), which may not be
possible if the images only contain partial overlap. In that case, it may be necessary to correct
for parallax only in the overlap areas, which can be accomplished using aMulti-Perspective Plane
Sweep (MPPS) algorithm (Kang et al. 2004, Uyttendaele et al. 2004).

When the motion in the scene is very large, i.e., when objects appear and disappear completely,
a sensible solution is to simply select pixels from only one image at a time as the source for the
final composite (Milgram 1977, Davis 1998, Agarwala et al. 2004), as discussed in §6.2. However,
when the motion is reasonably small (on the order of a few pixels), general 2-D motion estimation
(optic flow) can be used to perform an appropriate correction before blending using a process called
local alignment (Shum and Szeliski 2000, Kang et al. 2003). This same process can also be used
to compensate for radial distortion and 3D parallax, although it uses a weaker motion model than
explicitly modeling the source of error, and may therefore fail more often or introduce unwanted
distortions.

The local alignment technique introduced by Shum and Szeliski (2000) starts with the global
bundle adjustment (147) used to optimize the camera poses. Once these have been estimated,
the desired location of a 3D point xi can be estimated as the average of the back-projected 3D
locations,

xi ∼
∑

j

cijx̃i(x̂ij; Rj , fj), (151)

which can be projected into each image j to obtain a target location xij . The difference between
the target locations xij and the original features xij provide a set of local motion estimates

uij = xij − xij, (152)

which can be interpolated to form a dense correction field uj(xj). In their system, Shum and
Szeliski (2000) use an inverse warping algorithm where the sparse −uij values are placed at the
new target locationsxij , interpolated using bilinear kernel functions (Nielson 1993) and then added
to the original pixel coordinates when computing the warped (corrected) image. In order to get a
reasonably dense set of features to interpolate, Shum and Szeliski (2000) place a feature point at
the center of each patch (the patch size controls the smoothness in the local alignment stage), rather
than relying of features extracted using an interest operator.

An alternative approach to motion-based de-ghosting was proposed by Kang et al. (2003), who
estimate dense optical flow between each input image and a central reference image. The accuracy
of the flow vector is checked using a photo-consistency measure before a given warped pixel is

52



considered valid and therefore used to compute a high dynamic range radiance estimate, which
is the goal of their overall algorithm. The requirement for having a reference image makes their
approach less applicable to general image mosaicing, although an extension to this case could
certainly be envisaged.

5.3 Recognizing panoramas
The final piece needed to perform fully automated image stitching is a technique to recognize
which images actually go together, which Brown and Lowe (2003) call recognizing panoramas. If
the user takes images in sequence so that each image overlaps its predecessor and also specifies
the first and last images to be stitched, bundle adjustment combined with the process of topology
inference can be used to automatically assemble a panorama (Sawhney and Kumar 1999). How-
ever, users often jump around when taking panoramas, e.g., they may start a new row on top of
a previous one, or jump back to take a repeated shot, or create 360◦ panoramas where end-to-end
overlaps need to be discovered. Furthermore, the ability to discover multiple panoramas taken by
a user over an extended period of time can be a big convenience.

To recognize panoramas, Brown and Lowe (2003) first find all pairwise image overlaps using
a feature-based method and then find connected components in the overlap graph to “recognize”
individual panoramas (Figure 18). The feature-based matching stage first extracts SIFT feature
locations and feature descriptors (Lowe 2004) from all the input images and then places these in
an indexing structure, as described in §4.2. For each image pair under consideration, the nearest
matching neighbor is found for each feature in the first image, using the indexing structure to
rapidly find candidates, and then comparing feature descriptors to find the best match. RANSAC
is then used to find a set of inlier matches, using a pairs of matches to hypothesize a similarity
motion model that is then used to count the number of inliers.

In practice, the most difficult part of getting a fully automated stitching algorithm to work is
deciding which pairs of images actually correspond to the same parts of the scene. Repeated struc-
tures such as windows (Figure 19) can lead to false matches when using a feature-based approach.
One way to mitigate this problem is to perform a direct pixel-based comparison between the regis-
tered images to determine if they actually are different views of the same scene. Unfortunately, this
heuristic may fail if there are moving objects in the scene (Figure 20). While there is no magic bul-
let for this problem short of full scene understanding, further improvements can likely be made by
applying domain-specific heuristics such as priors on typical camera motions as well as machine
learning techniques applied to the problem of match validation.

53



(a)

(b)

(c)

Figure 18: Recognizing panoramas using our new algorithm (Brown et al. 2004): (a) input images with
pairwise matches; (b) images grouped into connected components (panoramas); (c) individual panoramas
registered and blended into stitched composites.

54



Figure 19: Matching errors (Brown et al. 2004): accidental matching of several features can lead to matches
between pairs of images that do not actually overlap.

Figure 20: Validation of image matches by direct pixel error comparison can fail when the scene contains
moving objects.

55



6 Compositing
Once we have registered all of the input images with respect to each other, we need to decide how
to produce the final stitched (mosaic) image. This involves selecting a final compositing surface
(flat, cylindrical, spherical, etc.) and view (reference image). It also involves selecting which pixels
contribute to the final composite and how to optimally blend these pixels to minimize visible seams,
blur, and ghosting.

In this section, I review techniques that address these problems, namely compositing surface
parameterization, pixel/seam selection, blending, and exposure compensation. My emphasis is
on fully automated approaches to the problem. Since the creation of high-quality panoramas and
composites is as much an artistic endeavor as a computational one, various interactive tools have
been developed to assist this process, e.g., (Agarwala et al. 2004, Li et al. 2004a, Rother et al.
2004). I will not cover these in this article, except where they provide automated solutions to our
problems.

6.1 Choosing a compositing surface
The first choice to be made is how to represent the final image. If only a few images are stitched
together, a natural approach is to select one of the images as the reference and to then warp all
of the other images into the reference coordinate system. The resulting composite is sometimes
called a flat panorama, since the projection onto the final surface is still a perspective projection,
and hence straight lines remain straight (which is often a desirable attribute).

For larger fields of view, however, we cannot maintain a flat representation without excessively
stretching pixels near the border of the image. (In practice, flat panoramas start to look severely dis-
torted once the field of view exceeds 90◦ or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Szeliski 1994, Chen 1995) or spherical (Szeliski and Shum 1997) projection,
as described in §2.3. In fact, any surface used for environment mapping in computer graphics can
be used, including a cube map that represents the full viewing sphere with the six square faces of
a cube (Greene 1986, Szeliski and Shum 1997). Cartographers have also developed a number of
alternative methods for representing the globe (Bugayevskiy and Snyder 1995).

The choice of parameterization is somewhat application dependent, and involves a tradeoff
between keeping the local appearance undistorted (e.g., keeping straight lines straight) and provid-
ing a reasonably uniform sampling of the environment. Automatically making this selection and
smoothly transitioning between representations based on the extent of the panorama is an interest-
ing topic for future research.

56



View selection. Once we have chosen the output parameterization, we still need to determine
which part of the scene will be centered in the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a reasonable choice is the one that is
geometrically most central. For example, for rotational panoramas represented as a collection
of 3D rotation matrices, we can choose the image whose z-axis is closest to the average z-axis
(assuming a reasonable field of view). Alternatively, we can use the average z-axis (or quaternion,
but this is trickier) to define the reference rotation matrix.

For larger (e.g., cylindrical or spherical) panoramas, we can still use the same heuristic if a
subset of the viewing sphere has been imaged. If the case of full 360◦ panoramas, a better choice
might be to choose the middle image from the sequence of inputs, or sometimes the first image,
assuming this contains the object of greatest interest. In all of these cases, having the user control
the final view is often highly desirable. If the “up vector” computation described in §5.1 is working
correctly, this can be as simple as panning over the image or setting a vertical “center line” for the
final panorama.

Coordinate transformations. Once we have selected the parameterization and reference view,
we still need to compute the mappings between the input and output pixels coordinates.

If the final compositing surface is flat (e.g., a single plane or the face of a cube map) and the
input images have no radial distortion, the coordinate transformation is the simple homography
described by (19). This kind of warping can be performed in graphics hardware by appropriately
setting texture mapping coordinates and rendering a single quadrilateral.

If the final composite surface has some other analytic form (e.g., cylindrical or spherical), we
need to convert every pixel in the final panorama into a viewing ray (3D point) and then map it
back into each image according to the projection (and optionally radial distortion) equations. This
process can be made more efficient by precomputing some lookup tables, e.g., the partial trigono-
metric functions needed to map cylindrical or spherical coordinates to 3D coordinates and/or the
radial distortion field at each pixel. It is also possible to accelerate this process by computing exact
pixel mappings on a coarser grid and then interpolating these values.

When the final compositing surface is a texture-mapped polyhedron, a slightly more sophisti-
cated algorithm must be used. Not only do the 3D and texture map coordinates have to be properly
handled, but a small amount of overdraw outside of the triangle footprints in the texture map is
necessary, to ensure that the texture pixels being interpolated during 3D rendering have valid values
(Szeliski and Shum 1997).

Sampling issues. While the above computations can yield the correct (fractional) pixel addresses
in each input image, we still need to pay attention to sampling issues. For example, if the final
panorama has a lower resolution than the input images, pre-filtering the input images is neces-

57



sary to avoid aliasing. These issues have been extensively studied in both the image processing
and computer graphics communities. The basic problem is to compute the appropriate pre-filter,
which depends on the distance (and arrangement) between neighboring samples in a source image.
Various approximate solutions, such as MIP mapping (Williams 1983) or elliptically weighted
Gaussian averaging (Greene and Heckbert 1986) have been developed in the graphics commu-
nity. For highest visual quality, a higher order (e.g., cubic) interpolator combined with a spatially
adaptive pre-filter may be necessary (Wang et al. 2001). Under certain conditions, it may also be
possible to produce images with a higher resolution than the input images using a process called
super-resolution (§7).

6.2 Pixel selection and weighting
Once the source pixels have been mapped onto the final composite surface, we must still decide
how to blend them in order to create an attractive looking panorama. If all of the images are in
perfect registration and identically exposed, this is an easy problem (any pixel or combination
will do). However, for real images, visible seams (due to exposure differences), blurring (due to
mis-registration), or ghosting (due to moving objects) can occur.

Creating clean, pleasing looking panoramas involves both deciding which pixels to use and
how to weight or blend them. The distinction between these two stages is a little fluid, since per-
pixel weighting can be thought of as a combination of selection and blending. In this section, I
discuss spatially varying weighting, pixel selection (seam placement), and then more sophisticated
blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take an average value at each pixel,

C(x) =
∑

k

wk(x)Ĩk(x)

/

∑

k

wk(x) , (153)

where Ĩk(x) are the warped (re-sampled) images and wk(x) is 1 at valid pixels and 0 elsewhere.
On computer graphics hardware, this kind of summation can be performed in an accumulation
buffer (using the A channel as the weight).

Simple averaging usually does not work very well, since exposure differences, mis-registrations,
and scene movement are all very visible (Figure 21a). If rapidly moving objects are the only prob-
lem, taking a median filter (which is a kind of pixel selection operator) can often be used to remove
them (Irani and Anandan 1998) (Figure 21b). Conversely, center-weighting (discussed below) and
minimum likelihood selection (Agarwala et al. 2004) can sometimes be used to retain multiple
copies of a moving object (Figure 24).

58



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 21: Final composites computed by a variety of algorithms: (a) average, (b) median, (c) feathered
average, (d) p-norm p = 10, (e) Vornoi, (f) weighted ROD vertex cover with feathering, (g) graph cut seams
with Poisson blending, (h) and with pyramid blending.

59



A better approach to averaging is to weight pixels near the center of the image more heavily and
to down-weight pixels near the edges. When an image has some cutout regions, down-weighting
pixels near the edges of both cutouts and edges is preferable. This can be done by computing a
distance map or grassfire transform,

wk(x) =

∥

∥

∥

∥

∥

arg min
y

{‖y‖ | Ĩk(x + y) is invalid }
∥

∥

∥

∥

∥

, (154)

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel. The
Euclidean distance map can be efficiently computed using a two-pass raster algorithm (Daniels-
son 1980, Borgefors 1986). Weighted averaging with a distance map is often called feathering
(Szeliski and Shum 1997, Chen and Klette 1999, Uyttendaele et al. 2001) and does a reasonable
job of blending over exposure differences. However, blurring and ghosting can still be problems
(Figure 21c). Note that weighted averaging is not the same as compositing the individual images
with the classic over operation (Porter and Duff 1984, Blinn 1994), even when using the weight
values (normalized to sum up to one) as alpha (translucency) channels. This is because the over
operation attenuates the values from more distant surfaces, and hence is not equivalent to a direct
sum.

One way to improve feathering is to raise the distance map values to some large power, i.e.,
to use wp

k(x) in (153). The weighted averages then become dominated by the larger values, i.e.,
they act somewhat like a p-norm. The resulting composite can often provide a reasonable tradeoff
between visible exposure differences and blur (Figure 21d).

In the limit as p → ∞, only the pixel with the maximum weight gets selected,

C(x) = Ĩl(x)(x), (155)

where
l = arg max

k
wk(x) (156)

is the label assignment or pixel selection function that selects which image to use at each pixel.
This hard pixel selection process produces a visibility mask-sensitive variant of the familiar Vornoi
diagram, which assigns each pixel to the nearest image center in the set (Wood et al. 1997, Peleg
et al. 2000). The resulting composite, while useful for artistic guidance and in high-overlap
panoramas (manifold mosaics) tends to have very hard edges with noticeable seams when the
exposures vary (Figure 21e).

Xiong and Turkowski (1998) use this Vornoi idea (local maximum of the grassfire transform)
to select seams for Laplacian pyramid blending (which is discussed below). However, since the
seam selection is performed sequentially as new images are added in, some artifacts can occur.

60



(a) (b) (c)

Figure 22: Computation of regions of differences (RODs): (a) three overlapping images with a moving face;
(b) corresponding RODs; (c) graph of coincident RODs. (Taken from (Uyttendaele et al. 2001)).

Optimal seam selection. Computing the Vornoi diagram is one way to select the seams between
regions where different images contribute to the final composite. However, Vornoi images totally
ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images agree, so that transitions
from one source to another are not visible. In this way, the algorithm avoids “cutting through”
moving objects where a seam would look unnatural (Davis 1998). For a pair of images, this process
can be formulated as a simple dynamic program starting from one (short) edge of the overlap region
and ending at the other (Milgram 1975, Milgram 1977, Davis 1998, Efros and Freeman 2001).

When multiple images are being composited, the dynamic program idea does not readily gen-
eralize. (For square texture tiles being composited sequentially, Efros and Freeman (2001) run a
dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaele et al. (2001) observed that for well-registered images,
moving objects produce the most visible artifacts, namely translucent looking ghosts. Their system
therefore decides which objects to keep and which ones to erase. First, the algorithm compares
all overlapping input image pairs to determine regions of difference (RODs) where the images
disagree. Next, a graph is constructed with the RODs as vertices and edges representing ROD pairs
that overlap in the final composite (Figure 22). Since the presence of an edge indicates an area of
disagreement, vertices (regions) must be removed from the final composite until no edge spans a
pair of remaining vertices. The smallest such set can be computed using a vertex cover algorithm.
Since several such covers may exist, a weighted vertex cover is used instead, where the vertex
weights are computed by summing the feather weights in the ROD (Uyttendaele et al. 2001). The
algorithm therefore prefers removing regions that are near the edge of the image, which reduces
the likelihood that partially visible objects will appear in the final composite. (It is also possible
to infer which object in a region of difference is the foreground object by the “edginess” (pixel
differences) across the ROD boundary, which should be higher when an object is present (Herley
2005).) Once the desired excess regions of difference have been removed, the final composite can
be created using a feathered blend (Figure 21f).

A different approach to pixel selection and seam placement was recently proposed by Agarwala
et al. (2004). Their system computes the label assignment that optimizes the sum of two objective

61



Figure 23: From a set of five source images (of which four are shown on the left), Photomontage quickly
creates a composite family portrait in which everyone is smiling and looking at the camera (right). Users
simply flip through the stack and coarsely draw strokes using the designated source image objective over the
people they wish to add to the composite. The user-applied strokes and computed regions are color-coded
by the borders of the source images on the left (middle). (Copied, with permission, from (Agarwala et al.
2004)).

functions. The first is a per-pixel image objective that determines which pixels are likely to produce
good composites,

CD =
∑

x
Dl(x)(x), (157)

where Dl(x)(x) is the data penalty associated with choosing image l at pixel x. In their system,
users can select which pixels to use by “painting” over an image with the desired object or appear-
ance, which sets D(x, l) to a large value for all labels l other than the one selected by the user
(Figure 23). Alternatively, automated selection criteria can be used, such as maximum likelihood
that prefers pixels that occur repeatedly (for object removal), or minimum likelihood for objects
that occur infrequently (for greatest object retention). Using a more traditional center-weighted
data term tends to favor objects that are centered in the input images (Figure 24).

The second term is a seam objective that penalizes differences in labelings between adjacent
images,

CS =
∑

(x,y)∈N

Sl(x),l(y)(x, y) (158)

where Sl(x),l(y)(x, y) is the image-dependent interaction penalty or seam cost of placing a seam
between pixels x and y, and N is the set of N4 neighboring pixels. For example, the simple
color-based seam penalty used in (Kwatra et al. 2003, Agarwala et al. 2004) can be written as

Sl(x),l(y)(x, y) = ‖Ĩl(x)(x) − Ĩl(y)(x)‖ + ‖Ĩl(x)(y) − Ĩl(y)(y)‖. (159)

More sophisticated seam penalties can also look at image gradients or the presence of image edges
(Agarwala et al. 2004). Seam penalties are widely used in other computer vision applications such

62



Figure 24: Set of five photos tracking a snowboarder’s jump stitched together into a seamless compos-
ite. Because the algorithm prefers pixels near the center of the image, multiple copies of the boarder are
retained.

as stereo matching (Boykov et al. 2001) to give the labeling function its coherence or smoothness.
An alternative approach, which places seams along strong consistent edges in overlapping images
using a watershed computation has recently been developed by Soille (2006).

The sum of the two objective functions is often called theMarkov Random Field (MRF) energy,
since it arises as the negative log-likelihood of an MRF distribution (Geman and Geman 1984). For
general energy functions, finding the minimum can be NP-hard (Boykov et al. 2001). However,
a variety of approximate optimization techniques have been developed over the years, including
simulated annealing (Geman and Geman 1984), graph cuts (Boykov et al. 2001), and loopy belief
propagation (Sun et al. 2003, Tappen and Freeman 2003). Both Kwatra et al. (2003) and Agarwala
et al. (2004) use graph cuts, which involves cycling through a set of simpler α-expansion re-
labelings, each of which can be solved with a graph cut (max-flow) polynomial-time algorithm
(Boykov et al. 2001).

For the result shown in Figure 21g, Agarwala et al. (2004) use a large data penalty for invalid
pixels and 0 for valid pixels. Notice how the seam placement algorithm avoids regions of differ-
ences, including those that border the image and which might result in cut off objects. Graph cuts
(Agarwala et al. 2004) and vertex cover (Uyttendaele et al. 2001) often produce similar looking
results, although the former is significantly slower since it optimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regions of difference.

63



6.3 Blending
Once the seams have been placed and unwanted object removed, we still need to blend the images
to compensate for exposure differences and other mis-alignments. The spatially-varying weighting
(feathering) previously discussed can often be used to accomplish this. However, it is difficult in
practice to achieve a pleasing balance between smoothing out low-frequency exposure variations
and retaining sharp enough transitions to prevent blurring (although using a high exponent does
help).

Laplacian pyramid blending. An attractive solution to this problem was developed by Burt and
Adelson (1983). Instead of using a single transition width, a frequency-adaptive width is used
by creating a band-pass (Laplacian) pyramid and making the transition widths a function of the
pyramid level. The process operates as follows.

First, each warped image is converted into a band-pass (Laplacian) pyramid, which involves
smoothing each level with a 1/16(1, 4, 6, 4, 1) binomial kernel, subsampling the smoothed image by
a factor of 2, and subtracting the reconstructed (low-pass) image from the original. This creates a
reversible, overcomplete representation of the image signal. Invalid and edge pixels are filled with
neighboring values to make this process well defined.

Next, the mask (valid pixel) image associated with each source image is converted into a low-
pass (Gaussian) pyramid. These blurred and subsampled masks become the weights used to per-
form a per-level feathered blend of the band-pass source images.

Finally, the composite image is reconstructed by interpolating and summing all of the pyramid
levels (band-pass images). The result of applying this pyramid blending is shown in Figure 21i.

Gradient domain blending. An alternative approach to multi-band image blending is to perform
the operations in the gradient domain. Reconstructing images from their gradient fields has a long
history in computer vision (Horn 1986), starting originally with work in brightness constancy
(Horn 1974), shape from shading (Horn and Brooks 1989), and photometric stereo (Woodham
1981). More recently, related ideas have been used for reconstructing images from their edges
(Elder and Golderg 2001), removing shadows from images (Weiss 2001), separating reflections
from a single image (Levin et al. 2004a), and tone mapping high dynamic range images by reducing
the magnitude of image edges (gradients) (Fattal et al. 2002).

Pérez et al. (2003) showed how gradient domain reconstruction can be used to do seamless
object insertion in image editing applications. Rather than copying pixels, the gradients of the
new image fragment are copied instead. The actual pixel values for the copied area are then
computed by solving a Poisson equation that locally matches the gradients while obeying the
fixed Dirichlet (exact matching) conditions at the seam boundary. Pérez et al. (2003) show that

64



this is equivalent to computing an additive membrane interpolant of the mismatch between the
source and destination images along the boundary. (The membrane interpolant is known to have
nicer interpolation properties for arbitrary-shaped constraints than frequency-domain interpolants
(Nielson 1993).) In earlier work, Peleg (1981) also proposed adding a smooth function to force a
consistency along the seam curve.

Agarwala et al. (2004) extended this idea to a multi-source formulation, where it no longer
makes sense to talk of a destination image whose exact pixel values must be matched at the seam.
Instead, each source image contributes its own gradient field, and the Poisson equation is solved
using Neumann boundary conditions, i.e., dropping any equations that involve pixels outside the
boundary of the image.

Rather than solving the Poisson partial differential equations, Agarwala et al. (2004) directly
minimize variational problem,

min
C(x)

‖∇C(x) −∇Ĩl(x)(x)‖2. (160)

The discretized form of this equation is a set of gradient constraint equations

C(x + ı̂) − C(x) = Ĩl(x)(x + ı̂) − Ĩl(x)(x) and (161)
C(x + ̂) − C(x) = Ĩl(x)(x + ̂) − Ĩl(x)(x), (162)

where ı̂ = (1, 0) and ̂ = (0, 1) are unit vectors in the x and y directions.22 They then solve the
associated sparse least squares problem. Since this system of equations is only defined up to an
additive constraint, Agarwala et al. (2004) ask the user to select the value of one pixel. In practice,
a better choice might be to weakly bias the solution towards reproducing the original color values.

In order to accelerate the solution of this sparse linear system, (Fattal et al. 2002) use multigrid,
whereas (Agarwala et al. 2004) use hierarchical basis preconditioned conjugate gradient descent
(Szeliski 1990, Szeliski 2006). The resulting seam blending work very well in practice (Fig-
ure 21h), although care must be taken when copying large gradient values near seams so that a
“double edge” is not introduced.

Copying gradients directly from the source images after seam placement is just one approach
to gradient domain blending. The paper by Levin et al. (2004b) examines several different variants
on this approach, which they call Gradient-domain Image STitching (GIST). The techniques they
examine include feathering (blending) the gradients from the source images, as well as using an
L1 norm in performing the reconstruction of the image from the gradient field, rather than using
an L2 norm as in (160). Their preferred technique is the L1 optimization of a feathered (blended)
cost function on the original image gradients (which they call GIST1-l1). Since L1 optimization
using linear programming can be slow, they develop a faster iterative median-based algorithm in

22At seam locations, the right hand side is replaced by the average of the gradients in the two source images.

65



a multigrid framework. Visual comparisons between their preferred approach and what they call
optimal seam on the gradients (which is equivalent to Agarwala et al. (2004)’s approach) show
similar results, while significantly improving on pyramid blending and feathering algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of compen-
sating for moderate amounts of exposure differences between images. However, when the exposure
differences become large, alternative approaches may be necessary.

Uyttendaele et al. (2001) iteratively estimate a local correction between each source image and
a blended composite. First, a block-based quadratic transfer function is fit between each source im-
age and an initial feathered composite. Next, transfer functions are averaged with their neighbors to
get a smoother mapping, and per-pixel transfer functions are computed by splining (interpolating)
between neighboring block values. Once each source image has been smoothly adjusted, a new
feathered composite is computed, and the process is be repeated (typically 3 times). The results
in (Uyttendaele et al. 2001) demonstrate that this does a better job of exposure compensation than
simple feathering, and can handle local variations in exposure due to effects like lens vignetting.

High dynamic range imaging. A more principled approach to exposure compensation is to
estimate a single high dynamic range (HDR) radiance map from of the differently exposed images
(Mann and Picard 1995, Debevec and Malik 1997, Mitsunaga and Nayar 1999, Reinhard et al.
2005). Most techniques assume that the input images were taken with a fixed camera whose pixel
values

Ik(x) = f(ckR(x); p) (163)

are the result of applying a parameterized radiometric transfer function f(R, p) to scaled radi-
ance values ckR(x). The exposure values ck are either known (by experimental setup, or from a
camera’s EXIF tags), or are computed as part of the fitting process.

The form of the parametric function differs from paper to paper. Mann and Picard (1995) use
a three-parameter f(R) = α + βRγ function, Debevec and Malik (1997) use a thin-plate cubic
spline, while Mitsunaga and Nayar (1999) use a low-order (N ≤ 10) polynomial for the inverse of
the transfer function.

To blend the estimated (noisy) radiance values into a final composite, Mann and Picard (1995)
use a hat function (accentuating mid-tone pixels), Debevec and Malik (1997) use the derivative of
the response function, while Mitsunaga and Nayar (1999) optimize the signal-to-noise ratio (SNR),
which emphasizes both higher pixel values and larger gradients in the transfer function.

Once a radiance map has been computed, it is usually necessary to display it on a lower gamut
(i.e., 8-bit) screen or printer. A variety of tone mapping techniques have been developed for this
purpose, which involve either computing spatially varying transfer functions or reducing image

66



(a) (b) (c)

(d) (e)

Figure 25: Merging multiple exposures to create a high dynamic range composite: (a–c) three different
exposures; (d) merging the exposures using classic algorithms (note the ghosting due to the horse’s head
movement); (e) merging the exposures with motion compensation (Kang et al. 2003).

gradients to fit the the available dynamic range (Fattal et al. 2002, Durand and Dorsey 2002,
Reinhard et al. 2002, Lischinski et al. 2006).

Unfortunately, casually acquired images may not be perfectly registered and may contain mov-
ing objects. Kang et al. (2003) present an algorithm that combines global registration with local
motion estimation (optic flow) to accurately align the images before blending their radiance es-
timates (Figure 25). Since the images may have widely different exposures, care must be taken
when producing the motion estimates, which must themselves be checked for consistency to avoid
the creation of ghosts and object fragments.

Even this approach, however, may not work when the camera is simultaneously undergoing
large panning motions and exposure changes, which is a common occurrence in casually acquired
panoramas. Under such conditions, different parts of the image may be seen at one or more expo-
sures. Devising a method to blend all of these different sources while avoiding sharp transitions
and dealing with scene motion is a challenging task that has recently been tackled by first finding
a consensus mosaic and then selectively computing radiances in under- and over-exposed regions
(Eden et al. 2006).

In the long term, the need to compute high dynamic range images frommultiple exposures may
be eliminated by advances in camera sensor technology (Yang et al. 1999, Nayar and Mitsunaga
2000, Kang et al. 2003, Tumblin et al. 2005). However, the need to blend such images and to tone

67



map them to a pleasing final result will likely remain.

7 Extensions and open issues
In this paper, I have surveyed the basics of image alignment and stitching, concentrating on tech-
niques for registering partially overlapping images and blending them to create seamless panora-
mas. A large number of additional techniques have been developed for solving related prob-
lems such as increasing the resolution of images by taking multiple displaced pictures (super-
resolution), stitching videos together to create dynamic panoramas, and stitching videos and im-
ages in the presence of large amounts of parallax.

Perhaps the most common question that comes up in relation to image stitching is the following.
“Why can’t you just take multiple images of the same scene with sub-pixel displacements and
produce an image with a higher effective resolution?” Indeed, this problem has been studied for
a long time and is generally known as multiple image super-resolution.23 Examples of papers
that have addressed this issue include (Keren et al. 1988, Irani and Peleg 1991, Cheeseman et al.
1993, Capel and Zisserman 1998, Capel and Zisserman 2000, Chaudhuri 2001). (See (Baker and
Kanade 2002) for a recent paper with lots of additional references and experimental comparisons.)
The general idea is that different images of the same scene taken from slightly different positions
(i.e., where the pixels don’t sample exactly the same rays in space) contain more information than
a single image. However, this is only true if the imager actually aliases the original signal, e.g., if
the silicon sensor integrates over a finite area and the optics do not cut off all the frequencies above
the Nyquist frequency. Motion estimation also needs to be very accurate for this to work, so that in
practice, an increase in resolution greater than 2× is difficult to achieve (Baker and Kanade 2002).

Another popular topic is video stitching (Teodosio and Bender 1993, Massey and Bender 1996,
Sawhney and Ayer 1996, Irani and Anandan 1998, Baudisch et al. 2005, Steedly et al. 2005).
While this problem is in many ways a straightforward generalization of multiple-image stitching,
the potential presence of large amounts of independent motion, camera zoom, and the desire to
visualize dynamic events impose additional challenges. For example, moving foreground objects
can often be removed using median filtering. Alternatively, foreground objects can be extracted
into a separate layer (Sawhney and Ayer 1996) and later composited back into the stitched panora-
mas, sometimes as multiple instances to give the impressions of a “Chronophotograph” (Massey
and Bender 1996) and sometimes as video overlays (Irani and Anandan 1998). Videos can also
be used to create animated panoramic video textures in which different portions of a panoramic
scene are animated with independently moving video loops (Agarwala et al. 2005, Rav-Acha et al.

23One can also increase the resolution of a single image using various kinds of non-linear or example-based inter-
polation techniques (Freeman et al. 2002, Baker and Kanade 2002).

68



2005).
Video can also provide an interesting source of content for creating panoramas taken frommov-

ing cameras. While this invalidates the usual assumption of a single point of view (optical center),
interesting results can still be obtained. For example the VideoBrush system (Sawhney et al. 1998)
uses thin strips taken from the center of the image to create a panorama taken from a horizontally
moving camera. This idea can be generalized to other camera motions and compositing surfaces
using the concept of mosaics on adaptive manifold (Peleg et al. 2000). Related ideas have been
used to create panoramic matte paintings for multi-plane cell animation (Wood et al. 1997), for
creating stitched images of scenes with parallax (Kumar et al. 1995), and as 3D representations of
more complex scenes using multiple-center-of-projection images (Rademacher and Bishop 1998).

Another interesting variant on video-based panoramas are concentric mosaics (Shum and He
1999). Here, rather than trying to produce a single panoramic image, the complete original video
is kept and used to re-synthesize novel views (from different camera origins) using ray remapping
(light field rendering), thus endowing the panorama with a sense of 3D depth. The same data set
can also be used to explicitly reconstruct the depth using multi-baseline stereo (Shum and Szeliski
1999, Shum et al. 1999, Peleg et al. 2001, Li et al. 2004b).

Open issues. While image stitching is by now a fairly mature field with a variety of commercial
products, there remain a large number of challenges and open extensions. One of these is to
increase the reliability of fully automated stitching algorithms. As discussed in §5.3 and illustrated
in Figures 19 and 20, it is difficult to simultaneously avoid matching spurious features or repeated
patterns while also being tolerant to large outliers such as moving people. Advances in semantic
scene understanding could help resolve some of these problems, as well as better machine learning
techniques for feature matching and validation.

The problem of parallax has also not been adequately solved. For small amounts of parallax,
the deghosting techniques described in §5.2 and §6.2 can often adequately disguise these effects
through local warping and careful seam selection. For high-overlap panoramas, concentric mo-
saics concentric mosaics (Shum and He 1999), panoramas with parallax (Li et al. 2004b) and
careful seam selection (with potential user guidance) (Agarwala et al. 2004) can be used. The
most challenging case is limited overlap panoramas with large parallax, since the depth estimates
needed to compensate for the parallax are only available in the overlap regions (Kang et al. 2004,
Uyttendaele et al. 2004).

69



References
Agarwala, A. et al.. (2004). Interactive digital photomontage. ACM Transactions on Graphics,
23(3), 292–300.

Agarwala, A. et al.. (2005). Panoramic video textures. ACM Transactions on Graphics, 24(3),
821–827.

Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual
motion. International Journal of Computer Vision, 2(3), 283–310.

Argyriou, V. and Vlachos, T. (2003). Estimation of sub-pixel motion using gradient cross-
correlation. Electronic Letters, 39(13), 980–982.

Ayache, N. (1989). Vision Stéréoscopique et Perception Multisensorielle. InterEditions., Paris.

Bab-Hadiashar, A. and Suter, D. (1998). Robust total least squares based optic flow computation.
In Asian Conference on Computer Vision (ACCV’98), pages 566–573, ACM, Hong Kong.

Badra, F., Qumsieh, A., and Dudek, G. (1998). Rotation and zooming in image mosaicing. In
IEEE Workshop on Applications of Computer Vision (WACV’98), pages 50–55, IEEE Computer
Society, Princeton.

Baker, S. and Kanade, T. (2002). Limits on super-resolution and how to break them. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1167–1183.

Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework: Part
1: The quantity approximated, the warp update rule, and the gradient descent approximation.
International Journal of Computer Vision, 56(3), 221–255.

Baker, S. et al.. (2003a). Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical
Report CMU-RI-TR-03-01, The Robotics Institute, Carnegie Mellon University.

Baker, S. et al.. (2003b). Lucas-Kanade 20 Years On: A Unifying Framework: Part 3. Technical
Report CMU-RI-TR-03-35, The Robotics Institute, Carnegie Mellon University.

Baker, S. et al.. (2004). Lucas-Kanade 20 Years On: A Unifying Framework: Part 4. Technical
Report CMU-RI-TR-04-14, The Robotics Institute, Carnegie Mellon University.

Barreto, J. and Daniilidis, K. (2005). Fundamental matrix for cameras with radial distortion.
In Tenth International Conference on Computer Vision (ICCV 2005), pages 625–632, Beijing,
China.

70



Bartoli, A., Coquerelle, M., and Sturm, P. (2004). A framework for pencil-of-points structure-
from-motion. In Eighth European Conference on Computer Vision (ECCV 2004), pages 28–40,
Springer-Verlag, Prague.

Baudisch, P. et al.. (2005). Panoramic viewfinder: providing a real-time preview to help users
avoid flaws in panoramic pictures. In OZCHI 2005, Canberra, Australia.

Baumberg, A. (2000). Reliable feature matching across widely separated views. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’2000), pages 774–
781, Hilton Head Island.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features. In Leonardis,
A., Bischof, H., and Pinz, A., editors, Computer Vision – ECCV 2006, pages 404–417, Springer.

Beis, J. S. and Lowe, D. G. (1997). Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’97), pages 1000–1006, San Juan, Puerto Rico.

Benosman, R. and Kang, S. B., editors. (2001). Panoramic Vision: Sensors, Theory, and Appli-
cations, Springer, New York.

Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992a). Hierarchical model-based
motion estimation. In Second European Conference on Computer Vision (ECCV’92), pages 237–
252, Springer-Verlag, Santa Margherita Liguere, Italy.

Bergen, J. R., Burt, P. J., Hingorani, R., and Peleg, S. (1992b). A three-frame algorithm for
estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(9), 886–896.

Black, M. J. and Anandan, P. (1996). The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.

Black, M. J. and Jepson, A. D. (1998). EigenTracking: robust matching and tracking of articulated
objects using a view-based representation. International Journal of Computer Vision, 26(1), 63–
84.

Black, M. J. and Rangarajan, A. (1996). On the unification of line processes, outlier rejection,
and robust statistics with applications in early vision. International Journal of Computer Vision,
19(1), 57–91.

Blinn, J. F. (1994). Jim Blinn’s corner: Compositing, part 1: Theory. IEEE Computer Graphics
and Applications, 14(5), 83–87.

71



Borgefors, G. (1986). Distance transformations in digital images. Computer Vision, Graphics
and Image Processing, 34(3), 227–248.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.

Brown, D. C. (1971). Close-range camera calibration. Photogrammetric Engineering, 37(8),
855–866.

Brown, L. G. (1992). A survey of image registration techniques. Computing Surveys, 24(4),
325–376.

Brown, M. and Lowe, D. (2003). Recognizing panoramas. In Ninth International Conference on
Computer Vision (ICCV’03), pages 1218–1225, Nice, France.

Brown, M., Szeliski, R., and Winder, S. (2004). Multi-Image Matching Using Multi-Scale Ori-
ented Patches. Technical Report MSR-TR-2004-133, Microsoft Research.

Brown, M., Szeliski, R., and Winder, S. (2005). Multi-image matching using multi-scale oriented
patches. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2005), pages 510–517, San Diego, CA.

Bugayevskiy, L. M. and Snyder, J. P. (1995). Map Projections: A Reference Manual. CRC Press.

Burt, P. J. and Adelson, E. H. (1983). Amultiresolution spline with applications to image mosaics.
ACM Transactions on Graphics, 2(4), 217–236.

Capel, D. and Zisserman, A. (1998). Automated mosaicing with super-resolution zoom. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’98),
pages 885–891, Santa Barbara.

Capel, D. and Zisserman, A. (2000). Super-resolution enhancement of text image sequences. In
Fifteenth International Conference on Pattern Recognition (ICPR’2000), pages 600–605, IEEE
Computer Society Press, Barcelona, Spain.

Carneiro, G. and Jepson, A. (2005). The distinctiveness, detectability, and robustness of local im-
age features. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2005), pages 296–301, San Diego, CA.

Cham, T. J. and Cipolla, R. (1998). A statistical framework for long-range feature matching in
uncalibrated image mosaicing. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’98), pages 442–447, Santa Barbara.

72



Champleboux, G. et al.. (1992). Accurate calibration of cameras and range imaging sensors,
the NPBS method. In IEEE International Conference on Robotics and Automation, pages 1552–
1558, IEEE Computer Society Press, Nice, France.

Chaudhuri, S. (2001). Super-Resolution Imaging. Springer.

Cheeseman, P., Kanefsky, B., Hanson, R., and Stutz, J. (1993). Super-Resolved Surface Recon-
struction From Multiple Images. Technical Report FIA-93-02, NASA Ames Research Center,
Artificial Intelligence Branch.

Chen, C.-Y. and Klette, R. (1999). Image stitching - comparisons and new techniques. In Com-
puter Analysis of Images and Patterns (CAIP’99), pages 615–622, Springer-Verlag, Ljubljana.

Chen, S. E. (1995). QuickTime VR – an image-based approach to virtual environment navigation.
Computer Graphics (SIGGRAPH’95), , 29–38.

Chum, O. and Matas, J. (2005). Matching with prosac — progressive sample consensus. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005),
pages 220–226, San Diego, CA.

Claus, D. and Fitzgibbon, A. (2005). A rational function lens distortion model for general
cameras. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2005), pages 213–219, San Diego, CA.

Coorg, S. and Teller, S. (2000). Spherical mosaics with quaternions and dense correlation. Inter-
national Journal of Computer Vision, 37(3), 259–273.

Corso, J. and Hager, G. (2005). Coherent regions for concise and stable image description. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005),
pages 184–190, San Diego, CA.

Cox, I. J., Roy, S., and Hingorani, S. L. (1995). Dynamic histogram warping of image pairs for
constant image brightness. In IEEE International Conference on Image Processing (ICIP’95),
pages 366–369, IEEE Computer Society.

Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics and Image Process-
ing, 14(3), 227–248.

Davis, J. (1998). Mosaics of scenes with moving objects. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’98), pages 354–360, Santa Barbara.

73



De Castro, E. and Morandi, C. (1987). Registration of translated and rotated iimages using finite
fourier transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5),
700–703.

Debevec, P. E. and Malik, J. (1997). Recovering high dynamic range radiance maps from pho-
tographs. Proceedings of SIGGRAPH 97, , 369–378. ISBN 0-89791-896-7. Held in Los Angeles,
California.

Dellaert, F. and Collins, R. (1999). Fast image-based tracking by selective pixel integration. In
ICCV Workshop on Frame-Rate Vision, pages 1–22.

Durand, F. and Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range
images. ACM Transactions on Graphics (TOG), 21(3), 257–266.

Eden, A., Uyttendaele, M., and Szeliski, R. (2006). Seamless image stitching of scenes with large
motions and exposure differences. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’2006), pages 2498–2505, New York, NY.

Efros, A. A. and Freeman, W. T. (2001). Image quilting for texture synthesis and transfer. In
Fiume, E., editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 341–346, ACM
Press / ACM SIGGRAPH.

El-Melegy, M. and Farag, A. (2003). Nonmetric lens distortion calibration: Closed-form solu-
tions, robust estimation and model selection. In Ninth International Conference on Computer
Vision (ICCV 2003), pages 554–559, Nice, France.

Elder, J. H. and Golderg, R. M. (2001). Image editing in the contour domain. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(3), 291–296.

Fattal, R., Lischinski, D., and Werman, M. (2002). Gradient domain high dynamic range com-
pression. ACM Transactions on Graphics (TOG), 21(3), 249–256.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM, 24(6), 381–395.

Fleet, D. and Jepson, A. (1990). Computation of component image velocity from local phase
information. International Journal of Computer Vision, 5(1), 77–104.

Förstner, W. (1986). A feature-based correspondence algorithm for image matching. Intl. Arch.
Photogrammetry & Remote Sensing, 26(3), 150–166.

74



Förstner, W. (1994). A framework for low level feature extraction. In Third European Conference
on Computer Vision (ECCV’94), pages 383–394, Springer-Verlag, Stockholm, Sweden.

Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(9), 891–906.

Freeman, W. T., Jones, T. R., and Pasztor, E. C. (2002). Example-based super-resolution. IEEE
Computer Graphics and Applications, 22(2), 56–65.

Fuh, C.-S. and Maragos, P. (1991). Motion displacement estimation using an affine model for
image matching. Optical Engineering, 30(7), 881–887.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
6(6), 721–741.

Gennert, M. A. (1988). Brightness-based stereo matching. In Second International Conference
on Computer Vision (ICCV’88), pages 139–143, IEEE Computer Society Press, Tampa.

Golub, G. and Van Loan, C. F. (1996). Matrix Computation, third edition. The John Hopkins
University Press, Baltimore and London.

Goshtasby, A. (1989). Correction of image deformation from lens distortion using bezier patches.
Computer Vision, Graphics, and Image Processing, 47(4), 385–394.

Goshtasby, A. (2005). 2-D and 3-D Image Registration. Wiley, New York.

Govindu, V. M. (2006). Revisiting the brightness constraint: Probabilistic formulation and al-
gorithms. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision – ECCV 2006,
pages 177–188, Springer.

Greene, N. (1986). Environment mapping and other applications of world projections. IEEE
Computer Graphics and Applications, 6(11), 21–29.

Greene, N. and Heckbert, P. (1986). Creating raster Omnimax images from multiple perspective
views using the elliptical weighted average filter. IEEE Computer Graphics and Applications,
6(6), 21–27.

Gremban, K. D., Thorpe, C. E., and Kanade, T. (1988). Geometric camera calibration using
systems of linear equations. In IEEE International Conference on Robotics and Automation,
pages 562–567, IEEE Computer Society Press, Philadelphia.

75



Grossberg, M. D. and Nayar, S. K. (2001). A general imaging model and a method for finding its
parameters. In Eighth International Conference on Computer Vision (ICCV 2001), pages 108–
115, Vancouver, Canada.

Hager, G. D. and Belhumeur, P. N. (1998). Efficient region tracking with parametric models of
geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(10), 1025–1039.

Hampel, F. R. et al.. (1986). Robust Statistics : The Approach Based on Influence Functions.
Wiley, New York.

Hannah, M. J. (1974). Computer Matching of Areas in Stereo Images. Ph.D. thesis, Stanford
University.

Hannah, M. J. (1988). Test results from SRI’s stereo system. In Image Understanding Workshop,
pages 740–744, Morgan Kaufmann Publishers, Cambridge, Massachusetts.

Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt, P. (1994). Real-time scene
stabilization and mosaic construction. In IEEE Workshop on Applications of Computer Vision
(WACV’94), pages 54–62, IEEE Computer Society, Sarasota.

Harris, C. and Stephens, M. J. (1988). A combined corner and edge detector. In Alvey Vision
Conference, pages 147–152.

Hartley, R. and Kang, S. B. (2005). Parameter-free radial distortion correction with centre
of distortion estimation. In Tenth International Conference on Computer Vision (ICCV 2005),
pages 1834–1841, Beijing, China.

Hartley, R. I. (1994). Self-calibration from multiple views of a rotating camera. In Third Euro-
pean Conference on Computer Vision (ECCV’94), pages 471–478, Springer-Verlag, Stockholm,
Sweden.

Hartley, R. I. and Zisserman, A. (2000). Multiple View Geometry. Cambridge University Press,
Cambridge, UK.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry. Cambridge University Press,
Cambridge, UK.

Herley, C. (2005). Automatic occlusion removal from minimum number of images. In Interna-
tional Conference on Image Processing (ICIP 2005), pages 1046–1049–16, Genova.

76



Horn, B. K. P. (1974). Determining lightness from an image. Computer Graphics and Image
Processing, 3(1), 277–299.

Horn, B. K. P. (1986). Robot Vision. MIT Press, Cambridge, Massachusetts.

Horn, B. K. P. and Brooks, M. J. (1989). Shape from Shading. MIT Press, Cambridge, Mas-
sachusetts.

Horn, B. K. P. and Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17,
185–203.

Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York.

Huffel, S. v. and Vandewalle, J. (1991). The Total Least Squares Problem: Computational Aspects
and Analysis. Society for Industrial and Applied Mathematics, Philadephia.

Irani, M. and Anandan, P. (1998). Video indexing based on mosaic representations. Proceedings
of the IEEE, 86(5), 905–921.

Irani, M. and Anandan, P. (1999). About direct methods. In International Workshop on Vision
Algorithms, pages 267–277, Springer, Kerkyra, Greece.

Irani, M. and Peleg, S. (1991). Improving resolution by image registration. Graphical Models
and Image Processing, 53(3), 231–239.

Irani, M., Hsu, S., and Anandan, P. (1995). Video compression using mosaic representations.
Signal Processing: Image Communication, 7, 529–552.

Jia, J. and Tang, C.-K. (2003). Image registration with global and local luminance alignment. In
Ninth International Conference on Computer Vision (ICCV 2003), pages 156–163, Nice, France.

Jurie, F. and Dhome, M. (2002). Hyperplane approximation for template matching. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(7), 996–1000.

Kadir, T. and Brady, M. (2001). Saliency, scale and image description. International Journal of
Computer Vision, 45(2), 83–105.

Kadir, T., Zisserman, A., and Brady, M. (2004). An affine invariant salient region detector.
In Eighth European Conference on Computer Vision (ECCV 2004), pages 228–241, Springer-
Verlag, Prague.

Kang, S. B. (2001). Radial distortion snakes. IEICE Trans. Inf. & Syst., E84-D(12), 1603–1611.

77



Kang, S. B. et al.. (2003). High dynamic range video. ACM Transactions on Graphics, 22(3),
319–325.

Kang, S. B. and Weiss, R. (1997). Characterization of errors in compositing panoramic images.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’97),
pages 103–109, San Juan, Puerto Rico.

Kang, S. B., Szeliski, R., and Uyttendaele, M. (2004). Seamless Stitching using Multi-Perspective
Plane Sweep. Technical Report MSR-TR-2004-48, Microsoft Research.

Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: a more distinctive representation for local image
descriptors. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2004), pages 506–513, Washington, DC.

Kenney, C., Zuliani, M., and Manjunath, B. (2005). An axiomatic approach to corner de-
tection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2005), pages 191–197, San Diego, CA.

Keren, D., Peleg, S., and Brada, R. (1988). Image sequence enhancement using sub-pixel dis-
placements. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’88), pages 742–746, IEEE Computer Society Press, Ann Arbor, Michigan.

Kim, J., Kolmogorov, V., and Zabih, R. (2003). Visual correspondence using energy minimization
and mutual information. In Ninth International Conference on Computer Vision (ICCV 2003),
pages 1033–1040, Nice, France.

Kuglin, C. D. and Hines, D. C. (1975). The phase correlation image alignment method. In IEEE
1975 Conference on Cybernetics and Society, pages 163–165, New York.

Kumar, R., Anandan, P., and Hanna, K. (1994). Direct recovery of shape from multiple views: A
parallax based approach. In Twelfth International Conference on Pattern Recognition (ICPR’94),
pages 685–688, IEEE Computer Society Press, Jerusalem, Israel.

Kumar, R., Anandan, P., Irani, M., Bergen, J., and Hanna, K. (1995). Representation of scenes
from collections of images. In IEEEWorkshop on Representations of Visual Scenes, pages 10–17,
Cambridge, Massachusetts.

Kwatra, V. et al.. (2003). Graphcut textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphics, 22(3), 277–286.

Le Gall, D. (1991). MPEG: A video compression standard for multimedia applications. Commu-
nications of the ACM, 34(4), 44–58.

78



Lee, M.-C. et al.. (1997). A layered video object coding system using sprite and affine motion
model. IEEE Transactions on Circuits and Systems for Video Technology, 7(1), 130–145.

Levin, A., Zomet, A., and Weiss, Y. (2004a). Separating reflections from a single image using lo-
cal features. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2004), pages 306–313, Washington, DC.

Levin, A., Zomet, A., Peleg, S., and Weiss, Y. (2004b). Seamless image stitching in the gradient
domain. In Eighth European Conference on Computer Vision (ECCV 2004), pages 377–389,
Springer-Verlag, Prague.

Li, Y. et al.. (2004a). Lazy snapping. ACM Transactions on Graphics, 23(3), 303–308.

Li, Y. et al.. (2004b). Stereo reconstruction from multiperspective panoramas. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(1), 44–62.

Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(3), 234–254.

Lischinski, D., Farbman, Z., Uytendaelle, M., and Szeliski, R. (2006). Interactive local adjust-
ment of tonal values. ACM Transactions on Graphics, 25(3), 646–653.

Loop, C. and Zhang, Z. (1999). Computing rectifying homographies for stereo vision. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’99),
pages 125–131, Fort Collins.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2), 91–110.

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an application
in stereo vision. In Seventh International Joint Conference on Artificial Intelligence (IJCAI-81),
pages 674–679, Vancouver.

Mann, S. and Picard, R. W. (1994). Virtual bellows: Constructing high-quality images from
video. In First IEEE International Conference on Image Processing (ICIP-94), pages 363–367,
Austin.

Mann, S. and Picard, R. W. (1995). On being ‘undigital’ with digital cameras: Extending dynamic
range by combining differently exposed pictures. In IS&T’s 48th Annual Conference, pages 422–
428, Society for Imaging Science and Technology, Washington, D. C.

79



Massey, M. and Bender, W. (1996). Salient stills: Process and practice. IBM Systems Journal,
35(3&4), 557–573.

Matas, J. et al.. (2004). Robust wide baseline stereo from maximally stable extremal regions.
Image and Vision Computing, 22(10), 761–767.

Matthies, L. H., Szeliski, R., and Kanade, T. (1989). Kalman filter-based algorithms for estimat-
ing depth from image sequences. International Journal of Computer Vision, 3, 209–236.

McLauchlan, P. F. and Jaenicke, A. (2002). Image mosaicing using sequential bundle adjustment.
Image and Vision Computing, 20(9-10), 751–759.

McMillan, L. and Bishop, G. (1995). Plenoptic modeling: An image-based rendering system.
Computer Graphics (SIGGRAPH’95), , 39–46.

Meehan, J. (1990). Panoramic Photography. Watson-Guptill.

Mikolajczyk, K. et al.. (2005). A comparison of affine region detectors. International Journal of
Computer Vision, 65(1-2), 43–72.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point detectors. Inter-
national Journal of Computer Vision, 60(1), 63–86.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

Milgram, D. L. (1975). Computer methods for creating photomosaics. IEEE Transactions on
Computers, C-24(11), 1113–1119.

Milgram, D. L. (1977). Adaptive techniques for photomosaicking. IEEE Transactions on Com-
puters, C-26(11), 1175–1180.

Mitsunaga, T. and Nayar, S. K. (1999). Radiometric self calibration. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR’99), pages 374–380, Fort
Collins.

Moravec, H. (1983). The stanford cart and the cmu rover. Proceedings of the IEEE, 71(7),
872–884.

Mühlich, M. and Mester, R. (1998). The role of total least squares in motion analysis. In
Fifth European Conference on Computer Vision (ECCV’98), pages 305–321, Springer-Verlag,
Freiburg, Germany.

80



Nayar, S. K. and Mitsunaga, T. (2000). High dynamic range imaging: Spatially varying pixel
exposures. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2000), pages 472–479, Hilton Head Island.

Nene, S. and Nayar, S. K. (1997). A simple algorithm for nearest neighbor search in high
dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 989–1003.

Nielson, G. M. (1993). Scattered data modeling. IEEE Computer Graphics and Applications,
13(1), 60–70.

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2006),
pages 2161–2168, New York City, NY.

Okutomi, M. and Kanade, T. (1993). A multiple baseline stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(4), 353–363.

OpenGL-ARB. (1997). OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.1. Addison-Wesley, Reading, MA, 2nd edition.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). Discrete-Time Signal Processing.
Pearson Education, 2nd edition.

Peleg, R., Ben-Ezra, M., and Pritch, Y. (2001). Omnistereo: Panoramic stereo imaging. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(3), 279–290.

Peleg, S. (1981). Elimination of seams from photomosaics. Computer Vision, Graphics, and
Image Processing, 16, 1206–1210.

Peleg, S. et al.. (2000). Mosaicing on adaptive manifolds. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(10), 1144–1154.

Peleg, S. and Rav-Acha, A. (2006). Lucas-Kanade without iterative warping. In International
Conference on Image Processing (ICIP-2006), pages 1097–1100, Atlanta.

Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. ACM Transactions on
Graphics, 22(3), 313–318.

Platel, B., Balmachnova, E., Florack, L., and ter Haar Romeny, B. (2006). Top-points as interest
points for image matching. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision
– ECCV 2006, pages 418–429, Springer.

81



Porter, T. and Duff, T. (1984). Compositing digital images. Computer Graphics (SIGGRAPH’84),
18(3), 253–259.

Quam, L. H. (1984). Hierarchical warp stereo. In Image Understanding Workshop, pages 149–
155, Science Applications International Corporation, New Orleans.

Rademacher, P. and Bishop, G. (1998). Multiple-center-of-projection images. In Computer
Graphics Proceedings, Annual Conference Series, pages 199–206, ACM SIGGRAPH, Proc. SIG-
GRAPH’98 (Orlando).

Rav-Acha, A., Pritch, Y., Lischinski, D., and Peleg, S. (2005). Dynamosaics: Video mosaics with
non-chronological time. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’2005), pages 58–65, San Diego, CA.

Rehg, J. and Witkin, A. (1991). Visual tracking with deformation models. In IEEE Interna-
tional Conference on Robotics and Automation, pages 844–850, IEEE Computer Society Press,
Sacramento.

Reinhard, E. et al.. (2002). Photographic tone reproduction for digital images. ACM Transactions
on Graphics (TOG), 21(3), 267–276.

Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. (2005). High Dynamic Range Imaging:
Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann.

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In
Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision – ECCV 2006, pages 430–
443, Springer.

Rother, C., Kolmogorov, V., and Blake, A. (2004). “GrabCut” - interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics, 23(3), 309–314.

Rousseeuw, P. J. (1984). Least median of squares regresssion. Journal of the American Statistical
Association, 79, 871–880.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New
York.

Samet, H. (1989). The Design and Analysis of Spatial Data Structures. Addison-Wesley, Read-
ing, Massachusetts.

Sawhney, H. S. (1994). 3D geometry from planar parallax. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’94), pages 929–934, IEEE Computer
Society, Seattle.

82



Sawhney, H. S. and Ayer, S. (1996). Compact representation of videos through dominant multiple
motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 814–
830.

Sawhney, H. S. and Kumar, R. (1999). True multi-image alignment and its application to mosaic-
ing and lens distortion correction. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(3), 235–243.

Sawhney, H. S. et al.. (1998). Videobrush: Experiences with consumer video mosaicing. In
IEEE Workshop on Applications of Computer Vision (WACV’98), pages 56–62, IEEE Computer
Society, Princeton.

Schaffalitzky, F. and Zisserman, A. (2002). Multi-view matching for unordered image sets, or
“How do I organize my holiday snaps?”. In Seventh European Conference on Computer Vision
(ECCV 2002), pages 414–431, Springer-Verlag, Copenhagen.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1), 7–42.

Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluation of interest point detectors. Interna-
tional Journal of Computer Vision, 37(2), 151–172.

Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fast pose estimation with parameter sensitive
hashing. In Ninth International Conference on Computer Vision (ICCV 2003), pages 750–757,
Nice, France.

Shi, J. and Tomasi, C. (1994). Good features to track. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’94), pages 593–600, IEEE Computer Society,
Seattle.

Shoemake, K. (1985). Animating rotation with quaternion curves. Computer Graphics (SIG-
GRAPH’85), 19(3), 245–254.

Shum, H.-Y. and He, L.-W. (1999). Rendering with concentric mosaics. In SIGGRAPH’99,
pages 299–306, ACM SIGGRAPH, Los Angeles.

Shum, H.-Y. et al.. (1999). Omnivergenet stereo. In Seventh International Conference on Com-
puter Vision (ICCV’99), pages 22–29, Greece.

Shum, H.-Y. and Szeliski, R. (1997). Panoramic Image Mosaicing. Technical Report MSR-TR-
97-23, Microsoft Research.

83



Shum, H.-Y. and Szeliski, R. (1999). Stereo reconstruction from multiperspective panoramas. In
Seventh International Conference on Computer Vision (ICCV’99), pages 14–21, Kerkyra, Greece.

Shum, H.-Y. and Szeliski, R. (2000). Construction of panoramic mosaics with global and local
alignment. International Journal of Computer Vision, 36(2), 101–130. Erratum published July
2002, 48(2):151-152.

Simoncelli, E. P., Adelson, E. H., and Heeger, D. J. (1991). Probability distributions of optic flow.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’91),
pages 310–315, IEEE Computer Society Press, Maui, Hawaii.

Slama, C. C., editor. (1980). Manual of Photogrammetry. American Society of Photogrammetry,
Falls Church, Virginia, fourth edition.

Soille, P. (2006). Morphological image compositing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(5), 673–683.

Steedly, D. et al.. (2005). Efficiently registering video into panoramic mosaics. In Tenth Interna-
tional Conference on Computer Vision (ICCV 2005), pages 1300–1307, Beijing, China.

Steele, R. and Jaynes, C. (2005). Feature uncertainty arising from covariant image noise. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005),
pages 1063–1070, San Diego, CA.

Steele, R. M. and Jaynes, C. (2006). Overconstrained linear estimation of radial distortion and
multi-view geometry. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision –
ECCV 2006, pages 253–264, Springer.

Stein, G. (1995). Accurate internal camera calibration using rotation, with analysis of sources of
error. In Fifth International Conference on Computer Vision (ICCV’95), pages 230–236, Cam-
bridge, Massachusetts.

Stein, G. (1997). Lens distortion calibration using point correspondences. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 602–608,
San Juan, Puerto Rico.

Stewart, C. V. (1999). Robust parameter estimation in computer vision. SIAM Reviews, 41(3),
513–537.

Sturm, P. (2005). Multi-view geometry for general camera models. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR’2005), pages 206–212, San
Diego, CA.

84



Sun, J., Zheng, N., and Shum, H. (2003). Stereo matching using belief propagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(7), 787–800.

Szeliski, R. (1989). Bayesian Modeling of Uncertainty in Low-Level Vision. Kluwer Academic
Publishers, Boston.

Szeliski, R. (1990). Fast surface interpolation using hierarchical basis functions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(6), 513–528.

Szeliski, R. (1994). Image mosaicing for tele-reality applications. In IEEE Workshop on Appli-
cations of Computer Vision (WACV’94), pages 44–53, IEEE Computer Society, Sarasota.

Szeliski, R. (1996). Video mosaics for virtual environments. IEEE Computer Graphics and
Applications, 16(2), 22–30.

Szeliski, R. (2006). Locally adapted hierarchical basis preconditioning. ACM Transactions on
Graphics, 25(3), 1135–1143.

Szeliski, R. and Coughlan, J. (1994). Hierarchical spline-based image registration. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’94), pages 194–
201, IEEE Computer Society, Seattle.

Szeliski, R. and Kang, S. B. (1994). Recovering 3D shape and motion from image streams
using nonlinear least squares. Journal of Visual Communication and Image Representation, 5(1),
10–28.

Szeliski, R. and Kang, S. B. (1995). Direct methods for visual scene reconstruction. In IEEE
Workshop on Representations of Visual Scenes, pages 26–33, Cambridge, Massachusetts.

Szeliski, R. and Shum, H.-Y. (1997). Creating full view panoramic image mosaics and texture-
mapped models. Computer Graphics (SIGGRAPH’97 Proceedings), , 251–258.

Tappen, M. F. and Freeman, W. T. (2003). Comparison of graph cuts with belief propagation for
stereo, using identical MRF parameters. In Ninth International Conference on Computer Vision
(ICCV 2003), pages 900–907, Nice, France.

Tardif, J.-P. et al.. (2006a). Self-calibration of a general radially symmetric distortion model.
In Seventh European Conference on Computer Vision (ECCV 2002), pages 186–199, Springer-
Verlag, Graz.

Tardif, J.-P., Sturm, P., and Roy, S. (2006b). Self-calibration of a general radially symmetric
distortion model. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision – ECCV
2006, pages 186–199, Springer.

85



Teodosio, L. and Bender, W. (1993). Salient video stills: Content and context preserved. In ACM
Multimedia 93, pages 39–46, Anaheim, California.

Thirthala, S. and Pollefeys, M. (2005). The radial trifocal tensor: A tool for calibrating the radial
distortion of wide-angle cameras. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’2005), pages 321–328, San Diego, CA.

Tian, Q. and Huhns, M. N. (1986). Algorithms for subpixel registration. Computer Vision,
Graphics, and Image Processing, 35, 220–233.

Triggs, B. (2004). Detecting keypoints with stable position, orientation, and scale under illumina-
tion changes. In Eighth European Conference on Computer Vision (ECCV 2004), pages 100–113,
Springer-Verlag, Prague.

Triggs, B. et al.. (1999). Bundle adjustment — a modern synthesis. In International Workshop
on Vision Algorithms, pages 298–372, Springer, Kerkyra, Greece.

Tumblin, J., Agrawal, A., and Raskar, R. (2005). Why i want a gradient camera. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’2005), pages 103–
110, San Diego, CA.

Tuytelaars, T. and Van Gool, L. (2004). Matching widely separated views based on affine invariant
regions. International Journal of Computer Vision, 59(1), 61–85.

Uyttendaele, M. et al.. (2004). Image-based interactive exploration of real-world environments.
IEEE Computer Graphics and Applications, 24(3).

Uyttendaele, M., Eden, A., and Szeliski, R. (2001). Eliminating ghosting and exposure arti-
facts in image mosaics. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’2001), pages 509–516, Kauai, Hawaii.

van de Weijer, J. and Schmid, C. (2006). Coloring local feature extraction. In Leonardis, A.,
Bischof, H., and Pinz, A., editors, Computer Vision – ECCV 2006, pages 334–348, Springer.

Viola, P. andWells III, W. (1995). Alignment by maximization of mutual information. In Fifth In-
ternational Conference on Computer Vision (ICCV’95), pages 16–23, Cambridge, Massachusetts.

Wang, L., Kang, S. B., Szeliski, R., and Shum, H.-Y. (2001). Optimal texture map reconstruction
from multiple views. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’2001), pages 347–354, Kauai, Hawaii.

Watt, A. (1995). 3D Computer Graphics. Addison-Wesley, third edition.

86



Weber, J. and Malik, J. (1995). Robust computation of optical flow in a multi-scale differential
framework. International Journal of Computer Vision, 14(1), 67–81.

Weiss, Y. (2001). Deriving intrinsic images from image sequences. In Eighth International
Conference on Computer Vision (ICCV 2001), pages 7–14, Vancouver, Canada.

Williams, L. (1983). Pyramidal parametrics. Computer Graphics, 17(3), 1–11.

Wood, D. N. et al.. (1997). Multiperspective panoramas for cel animation. In Computer
Graphics Proceedings, Annual Conference Series, pages 243–250, ACM SIGGRAPH, Proc. SIG-
GRAPH’97 (Los Angeles).

Woodham, R. J. (1981). Analysing images of curved surfaces. Artificial Intelligence, 17, 117–
140.

Xiong, Y. and Turkowski, K. (1997). Creating image-based VR using a self-calibrating fish-
eye lens. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’97), pages 237–243, San Juan, Puerto Rico.

Xiong, Y. and Turkowski, K. (1998). Registration, calibration and blending in creating high qual-
ity panoramas. In IEEE Workshop on Applications of Computer Vision (WACV’98), pages 69–74,
IEEE Computer Society, Princeton.

Yang, D. et al.. (1999). A 640x512 CMOS image sensor with ultra-wide dynamic range floating-
point pixel level ADC. IEEE Journal of Solid State Circuits, 34(12), 1821–1834.

Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual cor-
respondence. In Third European Conference on Computer Vision (ECCV’94), pages 151–158,
Springer-Verlag, Stockholm, Sweden.

Zitov’aa, B. and Flusser, J. (2003). Image registration methods: A survey. Image and Vision
Computing, 21, 997–1000.

Zoghlami, I., Faugeras, O., and Deriche, R. (1997). Using geometric corners to build a 2D
mosaic from a set of images. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’97), pages 420–425, San Juan, Puerto Rico.

87


